
AI-based assistant for personalized relocation

Bachelor Thesis

Windisch, August 2025

Students Stefan Simic
Damjan Stojanovic

Expert Sibylle Oeschger

Supervisors Kevin Kim

Nitish Patkar

Client Byung Yun Cho

Project number IIT04

Fachhochschule Nordwestschweiz, Hochschule für Technik

Abstract

The company Swissplatz offers a relocation service and is based in Geneva, Switzerland. Its core mission
is to help clients find suitable housing solutions in Switzerland. Many of these clients come from abroad,
which means they are often unfamiliar with the local language and Swiss rental laws. Throughout the
entire process, the client does not have direct contact with landlords. All communication is handled by a
mediator, ensuring that important information is not lost or misunderstood.

Currently, Swissplatz manages client preferences using Excel sheets and handles the search and com-
munication manually. This is especially time-consuming, as the Swiss housing market is spread across
several different platforms. Each platform must be checked individually in order to maintain an up-to-
date overview.

The goal of this project is to simplify and accelerate this process by providing digital support. A central
tool should help collect housing offers from various platforms and assist mediators in managing client
interactions more efficiently. The system is intended to reduce repetitive tasks with automation and the
use of Artificial Intelligence and improve the overall quality and speed of the service.

iii

Acknowledgements

We would like to thank our supervisors, Prof. Dr. Kevin Kim and Dr. Nitish Patkar, for their support and
guidance throughout the project. We are also thankful to our client, Byung Yun Cho, for the opportunity
to work on this project and for the constructive collaboration.

Furthermore, we would like to thank everyone who took the time to review our document and provide
valuable feedback. Special thanks go to all participants in the user testing sessions, whose input has been
important to improving the quality and usability of our solution.

iv CONTENTS

Contents

List of Figures v

List of Tables v

1 Introduction 1

1.1 Background and motivation . 1

1.2 Objectives and vision of the project . 1

1.3 Structure of the documentation . 2

1.4 Solution approach . 2

2 Background 3

2.1 Initial Situation . 3

2.2 Initial Technical Setup . 3

2.3 Stakeholders . 4

3 State of the Art 5

3.1 Related Work / Literature Review . 5

3.2 Existing Solutions / Competitor Analysis . 6

3.3 AI in Relocation Services . 8

3.4 Data Gathering . 10

3.5 Middleware . 13

3.6 Frontend / Website Technologies . 14

3.7 Database . 15

4 Methods 19

4.1 Project Methodology . 19

4.2 Proof of Concepts . 20

4.3 System Usability Scale . 20

4.4 Usability Testing . 20

5 Conceptual Design 21

5.1 Requirements Specification . 21

5.2 System Architecture . 25

5.3 Database . 27

5.4 Chatbot . 30

CONTENTS v

5.5 Middleware . 32

5.6 Data Gatherer . 33

5.7 Frontend . 34

6 Implementation 38

6.1 Analyzis of the Current State . 38

6.2 Data Gathering Engine . 39

6.3 Middleware . 46

6.4 Relocation Dashboard . 50

6.5 Chatbot / AI assistant . 52

6.6 Integration with Existing Systems . 55

6.7 Database Model . 56

6.8 Docker-based Containerization . 59

7 Evaluation 61

7.1 Usability testing . 61

7.2 Requirement Fulfillment . 66

7.3 Comparison to the State of the Art . 66

8 Discussion 67

8.1 Addressing research questions . 67

9 Conclusion and future work 69

9.1 Open challenges . 69

9.2 Further development potential . 70

Sources 71

Declaration of honesty 72

A Appendix 73

vi LIST OF FIGURES

List of Figures

3.1 Use of AI in relocation industry . 5

3.2 Workflow AI in Relocation Services . 8

5.1 Conceptual System Architecture . 26

5.2 Simple user-chatbot interaction workflow . 28

5.3 Simple database structure . 29

5.4 Chatbot interaction workflow diagram . 30

5.5 Conceptual Chatbot Architecture Diagram . 31

5.6 Conceptual Middleware Architecture Diagram . 32

5.7 Conceptual Data-Gatherer Architecture Diagram . 33

5.8 Conceptual Frontend Architecture Diagram . 34

5.9 Relocation Chatbot Overview . 35

5.10 Relocation Dashboard . 35

5.11 Loading Screen . 36

5.12 Results in Relocation Dashboard . 36

6.1 Simple Swissplatz Workflow Diagram . 38

6.2 ImmoScout24 Frontpage with Search Bar . 39

6.3 ImmoScout24 Apartment Listing Page . 40

6.4 Zoomed View of Apartment Details on ImmoScout24 40

6.5 Comparis Cookie Banner . 42

6.6 Comparis Frontpage with Search Bar . 42

6.7 Comparis Apartment List . 43

6.8 Comparis Detail View (Zoomed) . 43

6.9 Numbered Middleware Diagram . 46

6.10 Middleware Sequence Diagram . 49

6.11 Relocation Dashboard with Empty Chat . 50

6.12 Relocation Dashboard with Search Results . 51

6.13 Relocation Chatbot Overview - Chatbot List . 51

6.14 Sequence diagram of chatbot message handling . 53

6.15 Chatbot interaction . 54

6.16 Conceptual and Simplified Database Structure . 57

6.17 Complex Database Structure . 58

7.1 Measurement table . 63

LIST OF TABLES vii

7.2 Participants evaluation table . 64

7.3 Results of criteria . 65

A.1 API Access request to Flatfox . 73

A.2 Data Scraping request to immobilier . 73

A.3 First Lo-Fi Prototype Admin overview . 74

A.4 First Lo-Fi Prototype Customer Information . 74

A.5 First Lo-Fi Prototype Form Page 1 . 75

A.6 First Lo-Fi Prototype Form Page 2 . 75

A.7 First Lo-Fi Prototype Form Page 3 . 76

A.8 First Lo-Fi Prototype Summary . 76

A.9 First Prototype Form Screen . 77

A.10 First Prototype Loading Screen . 77

A.11 First Prototype Result Screen . 78

A.12 Usability Testing Stefan Müller . 79

A.13 Usability Testing Pascal Vogt . 79

A.14 Usability Testing Simon Canay . 80

A.15 Usability Testing Andrin Vogel . 80

A.16 Usability Testing Cindy Chung . 81

A.17 Usability Testing Robin Meier . 81

A.18 Usability Testing David Hürlimann . 82

A.19 Usability Testing Sandro Fischer . 82

List of Tables

3.1 Comparison of Swiss housing search platforms and relocation services 7

3.2 Comparison of data gathering methods for housing platforms 12

3.3 Comparison of popular frontend frameworks for interactive web applications 14

3.4 Comparison of MySQL and PostgreSQL . 16

3.5 Comparison of MongoDB and Redis (NoSQL Databases) 17

3.6 Comparison of database types for apartment search applications 18

5.1 Functional requirements for data gathering . 22

5.2 Non-functional requirements for data gathering . 22

5.3 Functional requirements for the dashboard . 23

5.4 Non-functional requirements for the dashboard . 23

5.5 Functional requirements for the chatbot . 24

5.6 Non-functional requirements for the chatbot . 24

6.1 Comparison of chatbot provider options . 52

viii LIST OF TABLES

1

1 Introduction

1.1 Background and motivation

Swissplatz is a mediation company that connects individuals looking to rent an apartment with plat-
forms that offer rental listings. Throughout the entire process, the client has no direct contact with the
landlord. All communication goes through the mediator. This is especially important as many clients
come from abroad and are unfamiliar with the local language and rental laws.

The workflow consists of three main phases: Searching, Administration, and Viewing.

In the Searching phase, the client shares their preferences with the mediator, who then searches for
suitable apartments and informs the client. This process is iterative until a suitable property is found. If
necessary, the mediator also contacts landlords to clarify missing information in listings.

The Administration phase involves the exchange of information between clients and landlords via the
mediator. Since landlords often require different documents and use their own forms, automation is
challenging, leading to extensive back-and-forth communication.

In the Viewing phase, the mediator arranges the apartment viewing appointment. Due to the high level
of manual work required, these processes are time-consuming. Finding ways to optimize and partially
automate certain steps could significantly improve efficiency.

1.2 Objectives and vision of the project

The goal of this project is to create an integrated platform that streamlines communication and automates
key aspects of the rental mediation process. Currently, the client preferences are managed in an excel
file, and mediators manually search for listings and manage communication. The new solution aims to
centralize these processes on a single platform, improving efficiency and accessibility.

The platform will serve as a hub where clients can enter their housing preferences, while mediators
manage rental offers in one place and upload them manually if needed. All interactions - such as feedback
on listings, document requests, and appointment coordination - will take place within this platform,
ensuring smooth and transparent communication between clients and mediators.

A key aspect of the project is automating the property search process. The system will gather listings
from various sources, reducing the need for manual searching and allowing mediators to focus on high-
value tasks. By integrating these functionalities, the platform will enhance scalability, improve user
experience, and provide a structured yet flexible solution for rental mediation.

This project, therefore aims to answer following research questions:

• What are the key challenges and best practices in retrieving and processing data from various
platforms to enable automation in the rental mediation process?

• How can the user experience be optimized to simplify data input and interaction between clients
and mediators and how is it perceived by users?

• What are the possibilities of artificial intelligence that can be utilized to automate processes in the
rental mediation workflow?

2 1 INTRODUCTION

1.3 Structure of the documentation

This documentation outlines the systematic approach we followed for the design and integration of the
developed solution.

The structure of the document reflects our workflow: we begin with a State of the Art analysis to address
our research questions, examine current industry practices, and identify where our solution fits within
this landscape. Based on these insights, we developed abstract solution concepts, independent of spe-
cific technologies. From these concepts and the resulting requirements, we proceeded with the concrete
implementation.

Finally, the solution was evaluated, discussed, and potential directions for future work were identified.

Thus, the structure of this document mirrors the sequence of our methodology.

1.4 Solution approach

To develop an effective solution tailored to our customer’s needs, we followed an iterative and feedback-
driven approach. Early in the project, we conducted meetings with our supervisors and our customer to
gather initial requirements and understand their expectations.

Based on these inputs, we created prototypes and proof-of-concept implementations, which we regularly
presented to stakeholders to gather feedback. This iterative process allowed us to refine the solution
continuously, adapt to changing goals, and ensure alignment with customer desires.

Throughout the project, we defined and adjusted the project scope collaboratively. This helped manage
feature changes in a controlled way while keeping the main objectives in focus.

To validate the usability of our solution, we conducted user tests with individuals outside the development
team. Their feedback gave us valuable insights into real-world usage and guided improvements to the
user interface and overall user experience.

While conducting our research, we focused primarily on answering the defined research questions. This
approach allowed us to align our work with established industry standards while integrating our own
contributions.

For our research, documentation and development process, we relied on the following tools:

• Google Scholar: Utilized for targeted searches of scientific articles, publications, and other aca-
demic sources to obtain relevant theoretical foundations.

• General Google Search: Applied to gather broader information, explore practical applications,
and identify industry practices.

• AI-Based Chatbots: Leveraged modern AI tools such as ChatGPT to structure and refine infor-
mation, explore alternative perspectives, assist in problem-solving, and support the documentation
process (including spelling, grammar, and overall document structure).

3

2 Background

2.1 Initial Situation

Swissplatz is a relocation company based in Geneva, Switzerland. Its core mission is to assist individuals-
especially those moving from abroad-in finding suitable housing in Switzerland. The process is currently
highly manual and is structured into three main phases:

• Searching: The client communicates their preferences (e.g., location, budget, number of rooms)
to a mediator. The mediator manually searches across various real estate platforms for suitable
listings and shares them with the client. This step often requires iteration until the client expresses
interest in a specific property.

• Administration: Once a client shows interest, the mediator begins the administrative process of
contacting landlords, gathering necessary documents, and managing forms. Since each landlord
has their own requirements, this part is highly individualized and difficult to automate.

• Viewing: When an agreement is reached, the mediator arranges the apartment viewing. This
includes coordinating schedules between client and landlord and confirming appointments.

Each of these phases is currently handled manually by the mediators. Client information and housing
preferences are stored in Excel sheets, and all communication is done via email or phone. This makes
the workflow time-consuming, error-prone, and difficult to scale.

The overall vision is to automate all phases of the process. However, the primary focus of this project is
the automation of the Searching Phase. In doing so, we are developing the platform that serves as the
foundation for further automation.

2.2 Initial Technical Setup

Swissplatz currently operates a website through which potential customers can register for the service
and establish initial contact.

Once a customer has expressed interest, Swissplatz collects their preferences during a personal meeting.
These details are then recorded manually in an Excel spreadsheet, which serves as the central working
document.

From there, Swissplatz employees search for apartments on various external platforms and log the results
in the same spreadsheet. This initiates an iterative process in which apartments are presented to the
customer, feedback is gathered, and further searches are conducted until a suitable apartment is found.

All information related to a customer - including preferences, search history, and apartment details -
is stored exclusively in this Excel file. As a result, Swissplatz currently lacks a centralized software
solution, and critical business processes are spread across multiple disconnected tools, making scalability
and collaboration more difficult.

Furthermore, communication with both landlords and customers takes place via different, unrelated chan-
nels such as email and phone calls, leading to fragmented information flow and potential inefficiencies.

4 2 BACKGROUND

2.3 Stakeholders

The primary stakeholders involved in this project are:

• Clients: Individuals looking to relocate to Switzerland. Their main concern is finding housing
quickly and easily, despite language or legal barriers.

• Mediators: Employees at Swissplatz who manage the entire relocation process. They will be the
primary users of the dashboard and internal tools.

• Landlords: Landlords could profit from unified communication, making the overall process better.

5

3 State of the Art

This chapter provides an overview of current technologies, research, and solutions relevant to our project.
It sets the foundation for our design and implementation by analyzing existing approaches and identifying
gaps or limitations. The chapter is divided into related work, competitor analysis, application of artificial
intelligence in relocation services, scraping techniques, middleware/web technologies, and legal and
ethical considerations.

3.1 Related Work / Literature Review

Several academic studies and industry reports address the use of AI and chatbots in the housing and
relocation domain. These works provide insight into how digital tools can assist with data collection,
search optimization, and user interaction. While many industries, such as finance and healthcare, have
already started integrating artificial intelligence into their workflows, the relocation industry has been
slower at adopting it.

Figure 3.1: Use of AI in relocation industry

This diagram from Altair Global [1] shows that even more than half of the respondents haven’t integrated
AI into their relocation processes, and 5% are still exploring options. It showcases that there is still a lot
of open potential in this industry.

While the relocation sector has been slower to adopt AI, research in related housing areas shows how
these technologies can help solve complex information and process challenges. For example, Subedi
[2] developed the Landlord-Tenant Rights Bot, an AI chatbot that gives tenants and small landlords
state-specific legal information in the United States. It uses Retrieval-Augmented Generation (RAG)
with a database of legal summaries to provide accurate and relevant answers about evictions, security
deposits, and fair housing rules. Early testing showed a 90% satisfaction rate for how clear the answers
were, showing that conversational AI can make legal information easier to understand and help improve
housing stability. Even though this work focuses on landlord-tenant law rather than relocation directly,
the same AI methods could be used in relocation to handle legal questions, manage documents, and give
clients personalized guidance.

6 3 STATE OF THE ART

In a related but different domain, Isinkaye et al. [3] presented a mobile-based hostel location chatbot
system with integrated recommendation capabilities. The chatbot helps students find hostels that match
their preferences and uses a content-based filtering approach to generate a ranked list of suggestions.
Their evaluation with 152 users showed high ratings in areas such as recommendation accuracy, platform
compatibility, and user friendliness. Although targeted at student accommodation rather than relocation,
this work demonstrates how recommendation systems and conversational interfaces can streamline the
search process and improve user satisfaction. All this are concepts that could also benefit AI-driven
relocation platforms as well.

Most of the systems in these studies are either commercial or only available as research demos, so there
is still space for open and freely available AI tools in the relocation field. This research showcases that
while there is some related work, there is still a clear gap for widely accessible AI solutions that directly
address relocation needs.

3.2 Existing Solutions / Competitor Analysis

3.2.1 Existing Housing Search Platforms in Switzerland

Several platforms in Switzerland already provide online housing search services, including popular sites
such as ImmoScout24, Comparis, Homegate, and Flatfox. These platforms are well-established and
offer a wide range of search filters, map-based browsing, and up-to-date listings. They are designed for
individual users who want to explore available apartments or houses on their own. While their search
engines are powerful and provide large inventories, their functionality is limited to the discovery phase:
they do not guide users through the application process, offer mediation between tenants and landlords,
or provide direct assistance with legal and administrative questions. In practice, this means that users are
left to handle document preparation, landlord communication, and contract questions entirely on their
own.

A key limitation for many newcomers to Switzerland is that these platforms offer their interfaces and
communication channels primarily in German, French, or Italian, with limited multilingual support.
They also lack integrated features to assist non-local users in understanding the rental process, legal
requirements, or cultural expectations. For someone unfamiliar with the Swiss housing market, this can
make the process slow and confusing.

In contrast, some relocation services and human relocation agents offer more comprehensive support.
These services do not just present listings, they actively assist with the entire rental process. This can
include automated property matching based on client preferences, help with completing and submitting
application documents, guidance on local rental laws, and translation or interpretation services for non-
native speakers. Relocation agents may also coordinate viewings, negotiate with landlords, and clarify
contractual details, ensuring that clients understand every step of the process. While such services can
be highly valuable, they are typically offered at a premium cost and may not be accessible to all potential
tenants.

3.2 Existing Solutions / Competitor Analysis 7

The comparison between pure search platforms and relocation services highlights a clear gap in the Swiss
market: there is no widely available, AI-supported platform that combines the convenience of powerful
search tools with the personalized guidance and mediation found in relocation assistance. Bridging
this gap could make the housing search significantly easier, especially for international clients or those
unfamiliar with the Swiss rental system.

Feature Search Platforms (e.g., Im-
moScout24, Comparis, Home-
gate, Flatfox)

Relocation Services / Agents

Main Purpose Provide online property listings
and search filters

Assist clients through the entire
rental process, from search to
contract signing

User Guidance No personal guidance, self-
service only

Personalized support, tailored to
client’s needs and situation

Language Support Mostly German, French, Italian;
limited English support

Multilingual support

Mediation with Land-
lords

None Acts as intermediary between
tenant and landlord

Document Handling No document preparation or
submission help

Assists with preparing and sub-
mitting application documents

Legal and Process Sup-
port

No legal guidance or process ex-
planations

Provides explanations of Swiss
rental laws and local practices

Cost Free for users Premium service, usually paid
by client or employer

Target Audience Local residents familiar with the
Swiss housing market

Newcomers, expats, and clients
unfamiliar with Swiss rental sys-
tem

Table 3.1: Comparison of Swiss housing search platforms and relocation services

This table provides a clear summary of the main differences between common Swiss housing search
platforms and relocation services.

8 3 STATE OF THE ART

3.3 AI in Relocation Services

The use of artificial intelligence in relocation is still developing, but it already shows potential to improve
many parts of the process. From guiding users during the initial inquiry to organizing data and supporting
decision-making, AI can enhance efficiency and user experience. The following diagram illustrates one
possible workflow where AI is integrated into different stages of relocation services.

Chatbot

Parsing Input / Forward to Search

Search Algorithm

Extract Information / Parse Output

Visualization

User

Preference Input

Recommendation Output

Start

Figure 3.2: Workflow AI in Relocation Services

• Chatbots: Assist users in describing preferences and understanding processes.
• Search Algorithm: Suggest suitable listings based on prior selections or similar users.
• Information extraction / visualization: Parse listing descriptions and extract structured data (e.g.,

number of rooms, rent).

3.3.1 Chatbots

AI-driven Chatbots have become a regular tool for todays industry. Not only is it a daily work tool, for
some people it has become a part of life which can provide help in any case. Their powerful ability to
imitate and simulate a real human being is what makes it so appealing.

That is why it is important to take a close look and analyse what the industrial standard is.

First, we should take a moment to understand what a chatbot is and how it works behind the scenes. Ac-
cording to Oracle [4], a Chatbot is a computer program that simulates and processes human conversation
(either written or spoken), allowing humans to interact with digital devices as if they were communicat-
ing with a real person. Driven by AI, automated rules, natural-language processing (NLP), and machine
learning (ML), chatbots process data to deliver responses to requests of all kinds. Popular Examples are
ChatGPT from OpenAI and Microsoft Copilot.

A key advantage of chatbots is their ability to work around the clock and respond instantly, which makes
them particularly useful in industries where quick answers are important. In relocation services, they
can guide users through the housing search by asking structured questions about preferences, such as
location, budget, and property type. Instead of filling out static forms, users interact in a conversational
way, which often feels more natural and less time-consuming. Modern chatbots can also be connected
directly to databases or APIs, allowing them to provide real-time information about available listings.

3.3 AI in Relocation Services 9

For example, when a user specifies their criteria, the chatbot can immediately filter through housing data
and present matching results. In more advanced systems, they can even learn from previous interactions
to improve recommendations over time.

3.3.2 Examples in the industry

An example of an AI-supported tool in the Swiss relocation market is the Prime Relocation AI Chatbot1.
This chatbot does not directly search for properties or browse housing listings. Instead, it is designed
to support users with general information about the relocation process, provide access to city guides,
forward specific questions to the company’s expert team and help arrange appointments with relocation
specialists. The actual property search is handled by human relocation experts, who have access to
various resources, including some that are not publicly available, and can perform tailored searches
based on the client’s individual requirements.

From a functional perspective, the chatbot acts mainly as a communication and triage interface rather
than an integrated search or mediation system. It demonstrates how AI can be used to provide quick,
structured responses and guide users towards relevant human support channels. However, it is not con-
nected to real-time property databases and does not automate steps such as landlord communication or
legal guidance. In this sense, the AI component supports the service indirectly, with the core relocation
work still carried out by human agents.

Another example is the relocation technology offered by ARC Relocation2. ARC provides a client portal
called RELO AI, which is designed to centralize the relocation process in one place. Through this portal,
clients can track every step of their move, access important documents, communicate with relocation
coordinators, and receive updates in real time. The system also includes tools for budgeting, expense
tracking, and task management, helping clients stay organized throughout the process.

While ARC’s platform uses AI elements to improve recommendations and manage workflows, the main
strength lies in its integration of all relocation services into a single interface. Clients can view status up-
dates, receive personalized alerts, and interact with service providers directly through the platform. This
reduces the need for multiple communication channels and gives both clients and relocation managers a
clear overview of progress.

Similar to Prime Relocation, ARC’s system does not focus on automated property search through pub-
lic listings. Instead, the housing search is still handled by human relocation consultants, who use the
platform to share options with clients. The AI and digital tools work mainly to improve efficiency and
coordination, while the core property-matching process remains human-driven.

The examples of Prime Relocation and ARC Relocation show that AI is already being used in the relo-
cation industry to improve communication and provide better client support. However, these systems do
not fully automate the relocation process. Key tasks such as property searching and document handling
are still mainly carried out by human experts, with AI acting as a supportive tool rather than a complete
replacement.

1
https://www.primerelocation.ch/ai

2
https://arcrelocation.com/relocation-technology/

https://www.primerelocation.ch/ai
https://arcrelocation.com/relocation-technology/

10 3 STATE OF THE ART

3.4 Data Gathering

In modern web systems, acquiring up-to-date external data is often essential. In our case, apartment list-
ings are distributed across various platforms, each with their own structure, accessibility, and limitations.
This section presents an overview of different data acquisition methods that are commonly used in such
systems.

Each technique has trade-offs in terms of legality, stability, accuracy, and performance. Depending on
the provider’s technical offering and access policies, one or more methods may be necessary.

3.4.1 API-Based Access

An Application Programming Interface (API) offers a structured and standardized way to retrieve data
from a provider. When publicly documented or contractually available, this is often the most reliable and
legally compliant method for data gathering.

Advantages:

• Officially supported and typically stable over time.
• Returns well-structured data formats (e.g., JSON, XML).
• Developer-friendly, often with extensive documentation.

Challenges:

• May require registration, an API key, or a paid license.
• Access is limited to the data explicitly exposed.
• Many providers do not offer a public API at all.

In the scope of this project, we contacted various housing search platforms for possible access to their
API. For example, Flatfox3 and ImmoScout244 both provide APIs. However, these are unusable for
our purposes: the ImmoScout24 API only covers Germany, and the Flatfox API is intended solely for
internal use.

3.4.2 Direct Database Access

In rare cases, public services provide direct read access to their databases (or to a database replica) - for
instance, via SQL queries or downloadable data dumps. This method enables full data retrieval without
relying on frontend scraping or API limitations.

Advantages:

• Complete access to all available records, often including historical data.
• No rate limits imposed by a frontend or API.

Challenges:

• Typically requires an official partnership or internal system access.
• Data often needs extensive transformation to be usable.
• Requires deeper technical knowledge to interpret schema and relations.
• Risk of outdated schema or missing documentation.

Currently, there is no known direct database access for Swiss apartment or housing listings.
3
https://flatfox.ch/en/docs/api/

4
https://api.immobilienscout24.de/

https://flatfox.ch/en/docs/api/
https://api.immobilienscout24.de/

3.4 Data Gathering 11

3.4.3 Static Web Scraping

Based on this definition, we can distinguish between scraping HTML pages and JavaScript-based pages,
since the approach differs significantly depending on how the website is built.

Scraping is the process used to locate and retrieve DA (Development Applications) data from
council websites: addresses are searched for on the DA trackers and relevant information is
saved. The council websites that are scraped are served in either Hypertext Markup Language
(HTML) or embedded in a JavaScript [5].

The first approach - static scraping - involves parsing HTML content from publicly visible webpages.
Libraries such as BeautifulSoup or Scrapy can extract structured data directly from the HTML
code, similar to how a browser’s “Inspect Element” feature reveals a page’s structure.

Advantages:

• No API access required.
• Can be adapted to almost any platform.
• Fast execution.
• All information visible to a regular website visitor can be retrieved.

Challenges:

• Website structure changes frequently → code requires maintenance.
• Legal gray areas (Terms of Service, robots.txt restrictions).
• Data often needs cleaning and normalization.
• Only publicly visible data is accessible.
• Can be blocked by anti-bot detection systems.

3.4.4 Dynamic / GUI-Based Scraping (Selenium)

Some platforms rely heavily on JavaScript to render content after the initial page load. In these cases,
static HTML scraping fails because the desired data is not present in the raw HTML source. Instead,
browser automation frameworks such as Selenium simulate actual user interaction and execute the
JavaScript, allowing the scraper to capture dynamically generated content.

Advantages:

• Handles JavaScript-heavy, dynamically loaded pages.
• Can simulate complex user actions (clicks, scrolling, login, etc.).
• More resilient against some basic anti-bot measures.

Challenges:

• Significantly slower due to real-time rendering.
• Requires more resources (headless browser or full GUI).
• Can still be detected and blocked by advanced anti-bot systems.

12 3 STATE OF THE ART

3.4.5 Comparison of Techniques

Method Pros Cons Suitability for Hous-
ing Data

API Access Reliable, legal, struc-
tured data

Access restricted, not al-
ways available

Ideal (if available)

Database Access Full data, no scraping
needed

Requires direct agreement
or dump

Very good (but rare for
public platforms)

Static Scraping Universal, no access
needed

Fragile, terms of service
sensitive, requires mainte-
nance

Good for stable
HTML sites

Dynamic / GUI
Scraping

Works on dynamic
pages

Fragile, Slow, setup-heavy Only if JS prevents
scraping or it gets de-
tected as a bot

Table 3.2: Comparison of data gathering methods for housing platforms

In practice, scraping remains one of the few viable options for accessing housing data from platforms
that do not provide an API or partnership. While it introduces risks and complexity, careful engineering
and ethical considerations (e.g., rate limiting, identifying as a bot, not scraping protected content) can
mitigate these issues.

As part of this analysis, requests were sent via email to selected providers, such as Flatfox and Immo-
bilier, to ask about possible API access and the legal or technical feasibility of automated data collection.
The replies from these providers gave additional context to the publicly available information and helped
clarify certain limitations. The full email correspondence is included in Appendix.

3.5 Middleware 13

3.5 Middleware

Modern web systems are composed of several layers that need to interact in a reliable and efficient way.
The middleware is a crucial architectural layer that sits between the frontend (user interface) and the
backend services (e.g., database, scraping logic, or external APIs) [6].

It handles business logic, validates and transforms data, routes requests, manages authentication, and
ensures communication between all modules. In essence, it is the central control unit or heart of the
application - responsible for keeping all parts synchronized and responsive [7].

Key responsibilities of the middleware:

• Accepting and responding to HTTP requests (e.g., from frontend or chatbot)
• Querying the database and transforming results
• Coordinating with the data scraping service
• Authenticating users and authorizing admin access
• Structuring the application’s business logic (e.g., preference handling, result ranking)

Requirements for a good middleware:

• Fast: Low-latency communication between frontend and backend
• Scalable: Able to handle multiple concurrent sessions or users
• Available: Minimal downtime and quick recovery
• Maintainable: Clear structure and modern programming practices
• Extensible: Easy to integrate new components (e.g., new data sources or chatbot modules)

In this project, we decided to use Python for the middleware development, primarily due to the preference
and technical background of the customer. Python offers excellent libraries and frameworks for API
development, and it integrates well with machine learning models and database systems.

3.5.1 Popular Middleware Frameworks in Python

• Django REST Framework (DRF)5: Based on Django, this full-featured toolkit supports rapid
development of RESTful APIs. It provides serialization, authentication, view handling, and an
admin panel out of the box.

• FastAPI6: A newer, high-performance web framework built on top of Starlette and Pydantic.
FastAPI is asynchronous, type-safe, and very fast. It is ideal for modern microservice architec-
tures and supports automatic OpenAPI documentation.

• Flask + Flask-RESTful7: A lightweight option with flexible architecture, but requires more man-
ual setup. Less suitable for complex business logic or scaling needs.

• Sanic8: Lower-level asynchronous web frameworks with a strong focus on performance, but
steeper learning curves and fewer integrations.

5
https://www.django-rest-framework.org/

6
https://fastapi.tiangolo.com/

7
https://flask.palletsprojects.com/en/stable/

8
https://sanic.dev/en/

https://www.django-rest-framework.org/
https://fastapi.tiangolo.com/
https://flask.palletsprojects.com/en/stable/
https://sanic.dev/en/

14 3 STATE OF THE ART

3.6 Frontend / Website Technologies

The frontend is the interface through which users interact with the application. In the context of a relo-
cation assistant or apartment search platform, this interface must support real-time interactivity, dynamic
filtering, chatbot integration, and data visualization.

Modern frontend development is increasingly based on component-driven frameworks. These frame-
works help structure complex interfaces into reusable parts, improve maintainability, and support routing,
state management, and user interaction.

This section presents a comparison of widely adopted frontend frameworks suitable for building respon-
sive and interactive web applications.

3.6.1 Overview of Frontend Frameworks

The following table compares the most relevant technologies in terms of their suitability for interactive
search-based platforms.

Aspect Angular9 React10 Vue / NuxtJS11

Type Full-featured frame-
work

Library with ecosystem Lightweight frame-
work

Language TypeScript (strict,
structured)

JavaScript / TypeScript
(flexible)

JavaScript (optionally
TypeScript)

Learning Curve Steeper; opinionated
and structured

Medium; flexible but
fragmented

Low to medium; intu-
itive syntax

Routing / State Man-
agement

Built-in modules External libraries (Re-
act Router, Redux)

Vue Router, Vuex (op-
tional in NuxtJS)

Performance High; optimized for
large apps

High; fast rendering
via virtual DOM

Very fast; optimized re-
activity system

Tooling Strong CLI and dev
tools

Wide variety of tools
and starter kits

Lightweight CLI, inte-
grated tooling

Ecosystem / Commu-
nity

Mature, enterprise-
level support

Very large and active
community

Growing, especially in
Asia and Europe

Suitability for Dash-
board Interfaces

Excellent structure for
complex admin panels

Flexible; many open-
source UI libs

Good; simple for
smaller dashboards

Suitability for Chat-
bot Integration

Strong binding and
state management

Flexible; well-suited
for dynamic compo-
nents

Easily integrates via
components

Table 3.3: Comparison of popular frontend frameworks for interactive web applications

9
https://angular.dev/

10
https://react.dev/

11
https://nuxt.com/

https://angular.dev/
https://react.dev/
https://nuxt.com/

3.7 Database 15

3.6.2 Considerations for Framework Selection

When selecting a frontend technology for a relocation or apartment search platform, several technical
and project-related factors must be considered:

• Complexity of UI: Does the project require a structured admin dashboard or just simple pages?
• Developer experience: Is TypeScript familiarity important? Are team members experienced in a

specific framework?
• Integration needs: How will the frontend interact with middleware, databases, or chatbots?
• Community and longevity: Is long-term support, security, or active development important for

the project?

3.7 Database

Modern digital platforms depend heavily on well-structured databases that support fast, reliable access to
data. In our project, the database is a critical component that stores apartment-listings, user data, search
preferences, and chatbot interactions. It must support structured models with relations between different
entities, allow efficient querying, and scale with growing data volume.

In this section, we present different types of databases relevant to our domain.

3.7.1 Relational Databases

Relational databases store data in structured tables that are connected through defined relationships. Each
row (record) represents an entity, and columns define its attributes. They are based on SQL (Structured
Query Language) and follow a strict schema.

Advantages:

• Excellent for structured data with clear relationships (e.g., searchresult → apartment, chatbot →
searchquery).

• Mature ecosystem (e.g., PostgreSQL, MySQL) with strong support for indexing and ACID trans-
actions.

• Easy to enforce data integrity through constraints and foreign keys.

Disadvantages:

• Schema changes can be complex.
• Not ideal for semi-structured or unstructured data.

Famous relational databases are MySQL and PostgreSQL.

16 3 STATE OF THE ART

Aspect MySQL12 PostgreSQL13

Advantages

Popularity Very user-friendly, widely sup-
ported by shared hosting providers

Also open source, widely adopted
for professional applications

Performance High performance for simple read
operations

Optimized for complex queries and
larger data sets

Community Support Large user base, many tutorials
available

Strong documentation, developer-
focused

Compatibility Strong integration with PHP plat-
forms (e.g., WordPress)

Well-suited for modern stacks
(Python, JS, etc.)

Disadvantages

SQL Compliance Limited SQL standards support
(e.g., missing window functions)

Highly SQL-compliant (supports
CTEs, window functions, etc.)

Complex Data Hand-
ling

Less suitable for heavily relational
data

Strong handling of relations and
foreign keys

Data Validation Looser type enforcement, can lead
to silent errors

Strict type system and constraint
handling

JSON Support Basic JSON functionality only Advanced JSON support with in-
dexing and JSONPath

Table 3.4: Comparison of MySQL and PostgreSQL

3.7.2 NoSQL Databases

NoSQL (Not Only SQL) databases were developed to handle large-scale, often unstructured data. They
do not require a fixed schema and can store documents (e.g., JSON), key-value pairs, wide-columns, or
graphs.

Advantages:

• Flexible structure: ideal for rapidly changing or nested data (e.g., chatbot session logs).
• High scalability and performance for large datasets.

Disadvantages:

• No standardized query language (SQL-like querying varies per DB).
• Harder to enforce data relationships and constraints.

Popular examples include MongoDB (document-based) and Redis (key-value).
12
https://www.mysql.com/

13
https://www.postgresql.org/

https://www.mysql.com/
https://www.postgresql.org/

3.7 Database 17

Aspect MongoDB14 Redis15

Advantages

Data Model Document-based (JSON-like), ideal
for flexible and nested data

Key-value store, extremely fast ac-
cess and caching

Scalability Horizontally scalable with sharding
support

In-memory architecture, built for
high-throughput workloads

Use Cases Good for semi-structured data, logs,
and rapidly changing schemas

Ideal for caching, session storage,
queues, pub/sub

Querying Supports rich queries, indexing, ag-
gregation pipelines

Extremely low-latency key-based
lookups

Tooling Mature ecosystem, GUI tools like
Compass, Atlas cloud hosting

Lightweight, widely used with
strong community support

Disadvantages

Consistency Uses eventual consistency by de-
fault (can be tuned)

Data is ephemeral unless persis-
tence is explicitly configured

Memory Usage Stores full documents (can be large) Fully in-memory - limited by RAM
capacity

Relationships No joins; manual handling of rela-
tions needed

No built-in support for complex
structures or queries

Data Durability Needs replication or journaling for
strong durability

Requires configuration to persist
data between reboots

Table 3.5: Comparison of MongoDB and Redis (NoSQL Databases)

3.7.3 Object-Oriented Databases

Object-oriented databases store data as objects, closely reflecting object-oriented programming
paradigms. They are rarely used in web-scale applications today but can be suitable when application
logic maps tightly to complex data structures.

Advantages:

• Natural mapping to code in OOP languages.
• Reuse of objects directly in code (no ORMs needed).

Disadvantages:

• Less common, limited tooling, smaller community.
• Poor interoperability with standard web systems.

14
https://www.mongodb.com/

15
https://redis.io/

https://www.mongodb.com/
https://redis.io/

18 3 STATE OF THE ART

3.7.4 Comparison of Database Types in the Context of Apartment Search

Choosing the appropriate type of database is essential for the long-term scalability, performance, and
maintainability of the application. The apartment search domain typically requires structured, intercon-
nected data (e.g., apartments, users, preferences, interactions). In this section, we compare relational
databases, NoSQL document stores, and in-memory key-value stores regarding their suitability for such
a system [8], [9].

Aspect Relational DB (e.g.,
PostgreSQL)

Document Store (e.g.,
MongoDB)

Key-Value Store (e.g.,
Redis)

Data Structure Tables with rows and
columns; strict schema

Flexible JSON-like
documents; schema-
free

Simple key-value pairs
(strings, lists, sets)

Relations Between
Entities

Strong support via for-
eign keys and joins

Manual linking; no join
support

No native relationship
modeling

Schema Flexibility Rigid but controlled;
ideal for predictable
data

Highly flexible; good
for evolving data mod-
els

No structure enforce-
ment

Query Capabilities Powerful SQL queries,
aggregation, joins

Rich queries and ag-
gregations, but limited
joins

Extremely limited
(key-based access
only)

Use Case Fit: Listings Suited for structured
fields (price, size, loca-
tion)

Can store variable
fields in documents

Inefficient for anything
but quick lookups

Use Case Fit: User
Preferences

Easy to model user →
preferences → results
relations

Flexible but harder to
normalize or constrain

Poor fit unless ex-
tremely simple

Performance (Read) Optimized with in-
dexes and caching

Good, especially when
denormalized

Very fast (RAM-based)

Performance (Write) Transactional integrity,
slower but safer

Fast inserts; eventual
consistency

Extremely fast

Scaling Vertical and horizontal
(via replication, shard-
ing)

Horizontal via sharding Scales well but
memory-limited

Tooling / Ecosystem Mature (ORMs, admin
tools, migrations)

Good GUI and cloud
services (e.g., Atlas)

Lightweight tools;
mostly used for
caching

Suitability for Core
Data (Listings, Users)

Very suitable Suitable with trade-offs Not very suitable for
structured storage

Table 3.6: Comparison of database types for apartment search applications

19

4 Methods

4.1 Project Methodology

To ensure the successful implementation of the project, we rely on methodologies that cover the follow-
ing key aspects:

Project Planning: Combination of Scrum and Kanban

For high-level project planning, Scrum is used to define clear phases, milestones, and dependen- cies,
ensuring a structured workflow throughout the entire project timeline. This provides a solid framework
while maintaining flexibility. Kanban complements this approach by enabling agile task management,
allowing the team to adapt to changes as needed. Kanban boards are used to visualize progress continu-
ously, ensuring transparency and improving responsiveness to new requirements or challenges.

Requirements Analysis (Requirements Engineering)

To define user needs, expectations, and technical requirements, an iterative process is applied. Reg-
ular meetings with clients and supervisors are held to gather and document requirements, serving as a
foundation for development and helping to establish clear goals. The focus is on answering key questions
that drive the project forward. Additionally, literature research and competitor analysis are conducted to
derive industry-specific requirements for the product.

User-Centered Design

A user-centered approach is followed to ensure that the platform is intuitive, user-friendly, and functional.
Iterative prototypes serve as the foundation for continuous usability testing, where feedback from poten-
tial users is gathered and integrated into the development process. This ensures that the final product
meets user expectations and enhances overall usability.

Scientific Research and Literature Review

To address specific research questions and requirements, a thorough literature review is conducted. This
includes analyzing scientific articles, technical reports, and industry best practices, as well as comparing
competitor products. Additionally, discussions with industry experts provide valuable insights, helping
to translate theoretical knowledge into practical solutions.

Prototypes

To validate early ideas and gain rapid feedback, low- and high-fidelity prototypes were created through-
out the development process. These prototypes served as a communication tool between the development
team, the client, and potential users. Early wireframes and interface mockups were used to visualize the
core user interactions, layout structures, and essential features of the platform.

By presenting these prototypes in regular feedback meetings, we were able to collect targeted input,
align expectations with stakeholders, and identify potential usability issues before implementation. This
iterative prototyping approach allowed us to make informed design decisions and reduce the risk of
late-stage rework.

20 4 METHODS

4.2 Proof of Concepts

To evaluate technical feasibility and assess critical assumptions, we implemented multiple proof-of-
concept (PoC) solutions during the early and middle stages of development. These small-scale experi-
ments focused on validating essential components, such as the scraping logic, chatbot integration, and
backend communication.

Each PoC provided a focused insight into a specific challenge and enabled the team to test libraries, APIs,
and frameworks in a controlled environment. By doing so, we were able to identify potential technical
limitations early, explore alternative implementations, and strengthen our overall architecture based on
proven methods.

4.3 System Usability Scale

In order to systematically assess the usability of our solution, we conducted evaluations using the System
Usability Scale (SUS). SUS is a standardized questionnaire that allows us to measure perceived usability
based on real user feedback. It consists of 10 statements that users rate after interacting with the system.

This method provides a quick and reliable overview of user satisfaction, highlighting both strengths and
weaknesses in the user interface. The insights gathered through SUS helped us prioritize improvements,
validate our design choices, and ensure that the platform meets a high standard of user experience.

4.4 Usability Testing

Usability Testing is a user-centered evaluation method used to assess how easily and effectively people
can use a product or system. It involves observing representative users as they attempt to complete typical
tasks, with the goal of identifying usability issues, measuring user performance, and gathering feedback
to improve the design. This method focuses on practical, real-world interactions rather than theoretical
assumptions, making it a valuable approach for ensuring that a solution meets the needs and expectations
of its target audience.

21

5 Conceptual Design

This chapter presents the theoretical foundation and design concepts that guide the implementation of
our platform. It focuses on the high-level structure of the system and its components while abstracting
from the technical implementation details. The goal is to establish a clear architectural vision that aligns
with the requirements defined in the requirements chapter and serves as a blueprint for the development
phase.

The chapter is structured into key subsystems: the overall system architecture, the database design,
the chatbot logic, middleware, data gathering module, and the frontend. Each of these components
contributes to fulfilling the functional and non-functional requirements.

5.1 Requirements Specification

Before implementing a digital assistant for relocation, it is essential to clearly define what the system
must achieve. This chapter presents the functional and non-functional requirements for each of the
core components. The requirements are derived from the existing workflow at Swissplatz and the goals
defined earlier in the project.

They serve as the foundation for system design and ensure that all technical decisions align with the
actual needs of stakeholders. The following sections are structured by component: data gathering, dash-
board and chatbot.

22 5 CONCEPTUAL DESIGN

5.1.1 Data Gathering

Gathering relevant apartment data from various external platforms (e.g., ImmoScout24, Comparis) is a
fundamental part of this project. The quality and reliability of this data directly influence the user expe-
rience and the success of the recommendation system. Therefore, precise functional and non-functional
requirements are defined to guide the development and ensure robustness and consistency.

Functional Requirements

Nr. Requirement Description

DFA-1 Real data from different sources
is found

The system must retrieve apartment listings from
multiple online platforms reliably.

DFA-2 Data accuracy The scraped information (price, rooms, location)
must reflect what is shown on the source site, de-
spite possible anti-scraping mechanisms.

DFA-3 Data storage Retrieved listings must be stored in a database and
retrievable on demand.

DFA-4 Search filters The system must return only listings that match user-
defined filters (e.g., location, price range, number of
rooms).

DFA-5 Relevant data only Irrelevant entries (e.g., parking spots, garages) must
be filtered out.

DFA-6 Source reference Each listing must include a reference to the original
source (e.g., URL).

DFA-7 Field extraction The scraper must correctly extract fields such as ad-
dress, city, surface size, number of rooms, and rental
price.

Table 5.1: Functional requirements for data gathering

Non-Functional Requirements

Nr. Requirement Description

DNF-1 Fault tolerance The system must retry failed requests (e.g., due to
timeouts or bad status codes).

DNF-2 Logging All scraping actions and exceptions must be logged
for debugging and traceability.

DNF-3 Extensibility New sources must be integrable without breaking
existing scraper logic.

Table 5.2: Non-functional requirements for data gathering

5.1 Requirements Specification 23

5.1.2 Dashboard

The Relocation Dashboard is the central interface for mediators to manage listings and user interactions.
It should provide a clean, responsive, and intuitive user experience while enabling efficient workflows.
Functionalities include displaying listings, tagging, and managing user sessions.

Functional Requirements

Nr. Requirement Description

DBF-1 Listing display The dashboard must list apartments with essential
fields like price, location, and size.

DBF-2 Status tagging Listings can be tagged (e.g., “liked”, “pinned”, “dis-
liked”) for tracking client feedback.

DBF-3 Apartment management The system must support searching for apartments.

Table 5.3: Functional requirements for the dashboard

Non-Functional Requirements

Nr. Requirement Description

DBNF-1 Load performance The dashboard must load fully in under 2 seconds
on a standard desktop connection.

DBNF-2 UX consistency The design must follow a consistent layout and vi-
sual language across all components.

Table 5.4: Non-functional requirements for the dashboard

24 5 CONCEPTUAL DESIGN

5.1.3 Chatbot / AI Assistant

The chatbot will serve as the primary interface for client interaction. It collects preferences, answers
frequently asked questions, and ensures smooth onboarding for users. The chatbot must maintain a
professional tone, avoid off-topic discussions, and ensure that data is transferred correctly to backend
services.

Functional Requirements

Nr. Requirement Description

CBF-1 Preference collection The chatbot must collect structured preferences
from users (location, price range, etc.).

CBF-2 Dialogue handling The chatbot must be able to handle follow-up ques-
tions, misunderstandings, and clarifications.

CBF-3 Backend communication Data collected by the chatbot must be forwarded in
real time to backend services.

CBF-4 Conversation control The chatbot must avoid and redirect off-topic or ir-
relevant discussions.

CBF-5 Chat memory Chat history must be stored and available when the
user returns.

CBF-6 Context awareness The chatbot should keep track of conversation con-
text and refer to previous user inputs.

Table 5.5: Functional requirements for the chatbot

Non-Functional Requirements

Nr. Requirement Description

CBNF-1 Response time The chatbot must respond within 3 second after each
user input.

CBNF-2 Concurrency The chatbot must support at least 5 parallel conver-
sations.

CBNF-3 Logging All conversations must be logged securely for im-
provement and traceability.

CBNF-4 Professional tone The chatbot must use polite and professional lan-
guage at all times.

Table 5.6: Non-functional requirements for the chatbot

5.2 System Architecture 25

5.2 System Architecture

Our system consists of multiple modular components that interact to support and streamline the reloca-
tion process. The main subsystems are:

• Frontend / Admin Interface: The primary interface through which mediators manage users, apart-
ment listings, and chatbot communication.

• Data Gathering Engine: A scraping module responsible for collecting apartment rental offers
from multiple external platforms.

• Middleware: Acts as a communication layer between the frontend, backend services, database,
and AI modules. It handles business logic and ensures secure, structured data flow.

• Database: Stores all persistent data, including user profiles, listings, preferences, search filters,
and chatbot conversations.

• Chatbot: An AI-powered assistant that interacts with users to gather preferences, assist in the
apartment search, and answer relevant questions.

All components communicate through the middleware, with the exception of the chatbot. The logic
and operation of the chatbot is encapsulated and isolated, meaning it operates independently from the
middleware. This loosely coupled architecture promotes modularity, flexibility, and scalability.

26 5 CONCEPTUAL DESIGN

System Diagram

Frontend

API-Services

Views

Controllers
Backend

Database

Chatbot

Data-Access-
Layer

API-Layer

Business-
Logic-Layer

Middleware

Data-Access-
Layer

API-Layer

Business-
Logic-Layer

Get data from

Data-Gatherer

Apartment-
Searcher-

Layer

External data
sources

Comparis Immoscout24

Flatfox Immobilier

External AI
Service

API-Service

Figure 5.1: Conceptual System Architecture

The frontend loads all available data - including apartment listings and active or past conversations - and
processes user inputs in real time. These inputs and associated data are sent through the middleware,
which manages their integration and persistence in the backend database.

Most system data (excluding chatbot content) flows through the middleware. New information related
to apartment preferences triggers the Data Gathering Engine, which immediately initiates a targeted
search across configured external sources.

The Chatbot is fully responsible for managing user interactions, storing conversation histories, and
communicating with AI services. Alongside the Data Gathering Engine, it is one of the two subsystems
that directly communicate with external platforms (e.g., AI APIs and real estate websites).

5.3 Database 27

5.3 Database

The database is designed to support the core data flows of the application: storing apartment listings,
capturing user preferences, tracking chatbot conversations, and enabling administrative workflows.

The system relies on a relational database due to its structured and interconnected nature. Key entities
are linked via foreign key relationships to maintain data integrity and traceability.

The main entities include:

• Apartments: Listings collected from external platforms via scraping or APIs.
• Preferences: A set of structured filters (e.g., location, price range, room count), created per

chat session based on user input.
• Chat: Logs the conversation between the user and the AI assistant.
• Feedback: User responses related to individual apartments (e.g., “like”, “pin”, “dislike”).

The following diagram illustrates a simplified interaction workflow between the user, chatbot, and the
database.

28 5 CONCEPTUAL DESIGN

User gives
preferences to

Chatbot

Chatbot saves
messages

No

Yes

All informations
needed?

Chat asks for
additional

informations

Chatbot saves
preferences

Summarize
preferences for user

Searching apartments

Saves feedback of
user for apartment

Yes

No
User gives
feedback to
apartmentt?

End of workflow

User enters chat

Figure 5.2: Simple user-chatbot interaction workflow

The colored elements indicate when
database operations (store/update) oc-
cur. During a session, the chatbot it-
eratively collects user preferences and
stores all exchanged messages - includ-
ing both user inputs and bot responses.
Once sufficient information has been
gathered, the chatbot stores the final
Preferences and triggers the apart-
ment search.

Search results are retrieved from the
data gatherer module and presented to
the user via the UI. User feedback (such
as ”pinning” or ”liking” a listing) is
then saved to the Feedback entity.

This interaction pattern results in a
database schema composed of four
main relational tables:

5.3 Database 29

Simple database
structure

Has

Apartment

Street

Place

Living space

Rooms

Price

URL

Chatbot

Messages

Preferences

Place

Living space

Rooms

Radius

Price

Feedback

Comment

Opinion

Pinned

Seen

Hide

Has

Search for

Figure 5.3: Simple database structure

Each Chat instance is associated with multiple Messages, and each chat can result in a single
Preference object (which can be updated, if the user gives other preferences to the chatbot). The
Preferences are then used to search for suitable Apartments. For each apartment shown to the
user, a corresponding Feedback entry may be stored.

This structure ensures traceability across the full user journey, from first interaction to final apartment
evaluation.

The database is essential for all requirements and needs to persist all the data, to fullfill them. With this
concept apartments, preferences, chat-messages and feedback are all saved.

30 5 CONCEPTUAL DESIGN

5.4 Chatbot

The chatbot acts as the first point of contact for users. Its primary role is to collect user preferences (e.g.,
location, rent limit) and to answer basic questions regarding the relocation process16. Once sufficient
information has been gathered, the chatbot summarizes the input and initiates the apartment search17.
All user interactions are stored and forwarded to the backend for further processing18.

Key design goals:

• Natural language interaction, primarily in English, with support for multilingual dialogues where
required.

• Structured and goal-oriented conversations in which the chatbot actively guides the user through
the process.

• Input validation to ensure quality and relevance (e.g., numeric rent values, realistic price-location
combinations).

Start: User creates
new chatbot

Chatbot greets user

User input

No

Yes

Input a question?

No

Yes

Enough
information for a

search?

Answer question and
ask for next

information needed

Chatbot asks
question for
preferences

Summarizing the user
preferences

End: Chatbot
waiting for other

input

Figure 5.4: Chatbot interaction workflow diagram

The central element of the workflow is the user
input (marked in green). The chatbot (shown in
yellow) begins by greeting the user and prompting
for input. Once a message is received, the chatbot
evaluates its content to determine whether it is a
question or an answer.

• If the input is a question, the chatbot re-
sponds accordingly and waits for further
user input.

• If the input is an answer, the chatbot checks
whether it now has sufficient information to
perform a meaningful apartment search.

If required data is still missing, the chatbot asks
targeted follow-up questions (e.g., regarding price
range or number of rooms). Once all necessary
information is collected, it summarizes the prefer-
ences and ends the interaction phase.

Even after this point, the chatbot remains respon-
sive: the user may continue the conversation, and
new inputs are processed in real time. If new or
updated information is provided, the chatbot dy-
namically updates the user’s preferences and, if
needed, restarts the search process.

16Requirements CBF-1, CBF-2 & CBF-4
17Requirement CBF-3
18Requirements CBF-5 & CBF-6

5.4 Chatbot 31

5.4.1 Technology Overview

The development of a relocation assistant involves multiple technology layers, each serving a specific
role in the system. At the conceptual level, it is important to understand the general options without
committing to a specific implementation yet.

For the chatbot component, there are several possible approaches. Some solutions use pre-built chatbot
platforms (e.g., Microsoft Bot Framework, Google Dialogflow) that provide ready-to-use conversation
flows and can be connected to external services via APIs. Others rely on large language models (LLMs)
from providers such as OpenAI or Anthropic, where the conversation logic is defined through prompts
and API calls. In both cases, the chatbot acts as an interface that receives user input, processes it using
natural language understanding (NLU), and returns a structured response.

By understanding these technology categories early in the design process, the implementation phase can
focus on selecting the tools and frameworks that best fit the functional and non-functional requirements
of the relocation assistant.

5.4.2 Conceptual Chatbot Architecture

This workflow results in a system architecture as illustrated below:

Chatbot

API-Layer Model

API-Entrypoint

Validation-
Layer

Send prompt

Business-
Logic

Get previous
messages

Prompt-
Builder

Third-Party-
AI-Service

API

Repository

Database-
Interface

Database

Database

Figure 5.5: Conceptual Chatbot Architecture Diagram

The API layer receives user input through a dedicated interface. It validates incoming requests and
forwards them to the internal model logic. A dedicated Prompt Builder constructs a prompt for the
third-party AI service. This prompt includes the current message, relevant instructions, and previous
conversation context.

To retrieve past messages, the Prompt Builder accesses the chat history stored in the database. Once the
prompt is assembled, it is sent to the external AI service (e.g., via API), which processes the input and
generates a response.

This response is then saved back into the database as part of the ongoing conversation and returned to
the user through the same interface.

32 5 CONCEPTUAL DESIGN

5.5 Middleware

The middleware acts as the central communication layer of the system, connecting and coordinating the
different subsystems. It receives incoming requests and routes them to the appropriate endpoints where
the business logic is executed. Typical operations include storing and retrieving data, validating inputs,
and initiating apartment searches.

The Data Gathering module is implemented as an encapsulated component within the middleware itself.
Outsourcing it as an independent subsystem would increase architectural complexity without offering
substantial benefits. Therefore, it is directly integrated into the middleware to reduce overhead and
ensure seamless internal communication.

Middleware

API-Layer

API-Entrypoint

Validation-Layer

Model

Business-Logic

Interceptor

Request-
Interceptor

Repository

Database-
Interface

Database

Database

Data-Gathering-
Module

Searcher

Apartment-
Searcher

Figure 5.6: Conceptual Middleware Architecture Diagram

The starting point of the workflow is the API layer. Here, incoming HTTP requests are directed to
specific endpoints that determine which business logic to execute. The first step is input validation,
ensuring correctness and completeness of the data.

Before reaching the model layer, each request passes through an interceptor. The interceptor enriches
the request by analyzing additional metadata such as the chatbot ID and user-specific information (e.g.,
email and role). This approach ensures that individual endpoint calls remain clean and minimal, while
maintaining context-awareness and supporting integration with external systems like Wix, from where
we get information like email and role.

In the model layer, the corresponding business logic is executed. This may involve querying the database,
saving new records, or invoking the apartment search logic via the integrated Data Gathering module.

5.6 Data Gatherer 33

5.6 Data Gatherer

This module is responsible for retrieving relevant apartment listings from external platforms 19. Although
the task may sound straightforward, the actual implementation involves significant complexity. Each
platform has its own structure, access method, and level of bot protection, requiring a highly adaptable
and modular design.

The following diagram illustrates the high-level architecture of the Data Gatherer module:

Data-Gatherer Third-Party-
Sites

Comparis

Immoscout24

Flatfox

Immobilier

Interface-
Searcher

Comparis-
Searcher

Immoscout-
Searcher

Flatfox-Searcher

Immobilier-
Searcher

Search-
Coordinator

Figure 5.7: Conceptual Data-Gatherer Architecture Diagram

At the core of the system is an orchestrator that coordinates multiple searchers. Each searcher imple-
ments a common interface, ensuring consistent behavior across all platforms. This design abstracts the
internal implementation details of individual searchers and allows seamless integration of new ones.

The use of a unified interface brings several benefits:

• The orchestrator can trigger and manage all searchers in the same way.
• Concrete searchers can be implemented independently using different technologies or scraping

strategies.
• Changes in one searcher do not affect others, enhancing maintainability and scalability.

This flexibility is essential due to the diverse nature of the data sources:

• Some websites require advanced browser automation (e.g., Selenium) due to bot detection and
JavaScript-heavy rendering.

• Others allow simple HTML parsing, which can be handled efficiently by lightweight libraries such
as BeautifulSoup or Requests.

By allowing each searcher to use the most suitable approach for its target platform, the system ensures
both robustness and efficiency. This modular design makes it easy to extend the system with additional
platforms or improve individual scraping strategies without disrupting the overall architecture.

The apartment results are then returned to the middleware, where they are saved to the database.
19Requirements DFA-1 to DFA-7

34 5 CONCEPTUAL DESIGN

5.7 Frontend

The frontend serves as the main access point for users interacting with the system. Through the interface,
a user (in this case, an administrator) can select a chatbot and initiate a conversation. Based on the
gathered input, the chatbot assists in searching for suitable apartments20. The found apartments are then
listed in the frontend with additional tools to tag the apartments with information 21.

At the current stage of development, the interface displays a list of available chatbot instances. This
allows administrators to select and manage specific conversations.

In the long-term vision of the system, the end-user will directly access the chatbot on the main page,
without the need for manual administrator intervention. However, due to legal and practical uncertainties,
this functionality has been postponed. For this project, the chatbot will be operated by an administrator
on behalf of the user. That is the reason, why a chatbot list is needed. Otherwise a user would have only
one chatbot available.

After selecting a chatbot, the administrator can access the chat interface, view past messages, and interact
further. Apartment search requests are issued from within this view and processed accordingly.

Frontend

Chatbot-List

Views

Chatbot

Apartment-List

ControllersAPI-Services

Chatbot-List-
Controller

Chatbot-
Controller

Apartment-List-
Controller

Chatbot-Service

Apartment-
Service

Figure 5.8: Conceptual Frontend Architecture Diagram

The frontend is structured around two main services that handle communication with the underlying
subsystems. Each service is associated with a corresponding controller, which manages the business
logic and coordinates the display logic.

The visual elements on the screen are defined in distinct views. Each view represents a part of the site,
such as the chatbot overview, the chat interface, or the apartment search results.

20Requirement DBF-2
21Requirements DBF-1 and DBF-3

5.7 Frontend 35

5.7.1 Prototyping and Design Iterations

Figure 5.9: Relocation Chatbot Overview

Figure 5.10: Relocation Dashboard

36 5 CONCEPTUAL DESIGN

Figure 5.11: Loading Screen

Figure 5.12: Results in Relocation Dashboard

5.7 Frontend 37

To ensure that the frontend meets usability expectations and supports the desired workflow, several pro-
totypes were created during the early stages of development. These prototypes served as the foundation
for discussions with our customer and allowed us to validate layout ideas and visual structure before
implementation. This prototype showcases our final prototype on which we based the implementation of
our application.

• Relocation Chatbot Overview: The first screen’s main goal is to provide an overview over all
created chatbots and being able to manage them (e.g adding, deleting).

• Relocation Dashboard: The second screen shows the Relocation Dashboard. No other information
is being shown, to force a conversation with our AI-based chatbot. The goal is to be guided through
the process regarding the housing search.

• Loading Screen: When the conversation is done, and the search criteria is found, an algorithm is
searching various platforms for suiting advertisements.

• Result in Relocation Dashboard: Suitable housing options are being shown in the table, where the
entries can be managed with liking, disliking and pinning. Clicking on the address will open the
advertisement for further information and pictures.

Originally, the system was intended to include a client-facing interface, where end-users could interact
with the chatbot directly. However, due to legal and strategic considerations, the focus shifted toward
an internal tool designed exclusively for Swissplatz mediators. As a result, early prototypes differ sig-
nificantly from the final version. These earlier concepts are included in the appendix to document the
evolution of the system design.

38 6 IMPLEMENTATION

6 Implementation

6.1 Analyzis of the Current State

Customer contacts
Swissplatz

Plan a meeting

Exchange information
and give preferences

Swissplatz looks for
apartments

No

Yes

Customer
interested in an

apartment?

Swissplatz presents
results to customer

Yes

No

More
information needed

for apartment?

Swissplatz asks
landlord for more

information

Swissplatz or
customer visit

apartment

No

Yes

Customer
convinced of

apartment

Swissplatz applies for
the apartment

Figure 6.1: Simple Swissplatz Workflow Diagram

Currently, Swissplatz (highlighted in
yellow) operates primarily through its
website, which provides general infor-
mation about the company and its re-
location services. When a customer
(highlighted in green) becomes inter-
ested, they can create an account and
contact Swissplatz directly. From that
point on, the website is rarely used - all
further communication takes place via
email or phone calls.

To collect the necessary information,
Swissplatz schedules a personal meet-
ing with the customer. During this
meeting, preferences and requirements
are gathered and manually entered into
an Excel spreadsheet.

As suitable apartment listings are
found, they are also added to the same
spreadsheet. Once enough options are
available, they are shared with the cus-
tomer for review.

The customer then decides how to pro-
ceed. If one or more listings are of in-
terest, Swissplatz contacts the landlords
to obtain further details or to arrange
apartment viewings.

This initiates a feedback loop, where
the customer provides updated input or
expresses new preferences, and Swiss-
platz continues the search and coordi-
nation accordingly - until a decision is
reached.

If the customer applies for an apartment
and is accepted, the relocation process
is completed. If not, the loop restarts
and the process continues until a suc-
cessful match is found.

6.2 Data Gathering Engine 39

6.2 Data Gathering Engine

The data gathering engine is responsible for retrieving apartment listings from various external plat-
forms. In this section, we first examine the types of data sources used, then explain how data retrieval is
performed, and finally discuss implementation details.

6.2.1 Source Platforms

To understand the functionality of the engine, it is essential to analyse the platforms from which data is
collected.

As previously discussed, there are different approaches to retrieving data. Ideally, a platform provides a
public API - the most robust and reliable way to access structured data. However, this is not always the
case. When no API is available, scraping becomes necessary.

Our implementation focuses on two major platforms in Switzerland: ImmoScout24 and Comparis. The
following subsections describe how data is accessed from each platform.

ImmoScout24

ImmoScout24 does not offer a public API or direct access to their internal database. However, their
robots.txt file explicitly allows scraping, which provides a legal and ethical basis for data collection.

Upon visiting the homepage, users are presented with a search bar that accepts various filters such as
location, radius, price, and number of rooms.

Figure 6.2: ImmoScout24 Frontpage with Search Bar

After submitting a query, the site redirects to the apartment listing page. A typical URL might look like
the following:

https://www.immoscout24.ch/en/real-estate/rent

/city-aarau?r=5000&nrf=3&pt=2800

This shows that search parameters (e.g., radius, minimum number of rooms, price threshold) are embed-
ded directly in the URL. As a result, listings can be accessed directly by constructing appropriate URLs
- there is no need to simulate user interaction with the search bar.

40 6 IMPLEMENTATION

Figure 6.3: ImmoScout24 Apartment Listing Page

Each apartment is displayed as a separate HTML element, containing basic metadata such as title, lo-
cation, rent, and number of rooms. The scraper loops over each of these elements to extract relevant
information.

Figure 6.4: Zoomed View of Apartment Details on ImmoScout24

This zoomed-in screenshot of a listing element shows the essential data fields - including number of
rooms, living space, price, street, and location - which are extracted and displayed on our application’s
front page.

At the current stage of development, only this summary-level data is retrieved, as it is sufficient for the
apartment overview and initial filtering. However, the system architecture is designed to be extensible:
more detailed information can be collected in the future by following the links to individual apartment
detail pages, where additional metadata is available (e.g., availability date, amenities, description text).

Based on this analysis, it becomes clear that scraping the apartment listing page alone is sufficient for
ImmoScout24. This means that there is no need to render or simulate user interaction via a headless
browser with Selenium, and the implementation can rely on lightweight static HTML scraping.

To achieve this, we evaluated two different libraries: BeautifulSoup and Selectolax. Both libraries are
designed for parsing HTML documents and are widely used in the context of web scraping.

6.2 Data Gathering Engine 41

Initially, we implemented an ImmoScout24 scraper using BeautifulSoup. However, after a short time,
ImmoScout24 began identifying our scraper as a bot, resulting in incomplete or incorrect data being
returned.

To mitigate this, we switched to Selectolax, which provides a faster HTML parser and more advanced
selector tools that allow us to more closely emulate human-like scraping behavior. This significantly
improved the reliability of our data collection and reduced the risk of detection.

Therefore, the current implementation of the ImmoScout24 searcher is based on Selectolax and will be
described in more detail in the following section.

Implementation of the Searcher

This section focuses on the technical logic behind the searcher’s implementation. It does not cover
structural design aspects such as interface inheritance or the orchestration logic of how the class is in-
voked. Instead, the emphasis is on the operational steps required to retrieve apartment data from the
ImmoScout24 website.

Each platform-specific searcher adheres to a common interface, ensuring consistent interaction with the
rest of the system. All required search parameters - such as location, radius, number of rooms, and price
limit - are passed into the method as arguments.

1 def getApartments(self, chatbot_id: str, place: str, radius: float,

2 rooms: int, price: float) -> List[SearchResult]:

To reduce the likelihood of being detected as a bot, the scraper emulates a typical browser environment.
In this case, we simulate a Chrome browser on a Windows machine using the cloudscraper library:

1 scraper = cloudscraper.create_scraper(

2 browser={'browser': 'chrome', 'platform': 'windows', 'mobile': False}

3)

After establishing a browser fingerprint, the search URL is dynamically constructed using the input
parameters. The scraper then requests the apartment listing page and parses the HTML content. Each
listing element is analysed, and structured apartment data is extracted and stored in application-specific
data models.

This logic allows for fast, lightweight, and reliable data retrieval from ImmoScout24 - as long as the
platform layout and detection mechanisms remain stable.

Comparis

The situation with Comparis is similar to ImmoScout24: there is no public API, and no direct database
access is provided. However, scraping is permitted according to their robots.txt file.

In practice, Comparis presents significantly more challenges. It has stricter bot detection mechanisms
and a more dynamic and complex architecture. Unlike ImmoScout24, where the URL clearly contains
search parameters, Comparis uses encoded request parameters in the URL. An example of such a URL
is:

https://www.comparis.ch/immobilien/result/list?requestobject=%7B%22D.

These long, encoded URLs make it impractical to directly construct the search URL by hand - especially
since the internal structure of the query object is undocumented and subject to change.

42 6 IMPLEMENTATION

Therefore, we must interact with the website dynamically, mimicking a real user session from the start.
This process begins on the Comparis homepage, where users are prompted to accept cookie settings:

Figure 6.5: Comparis Cookie Banner

Only after accepting the cookie policy is it possible to interact with the search interface:

Figure 6.6: Comparis Frontpage with Search Bar

Once the user provides the desired search criteria and submits the query, the platform navigates to the
apartment listing page:

6.2 Data Gathering Engine 43

Figure 6.7: Comparis Apartment List

Here, the structure is again similar to ImmoScout24: each apartment is represented as an HTML element
containing essential attributes such as price, address, and number of rooms - all visible on the summary
card. There is no need to visit the detailed listing page unless additional metadata is required.

Figure 6.8: Comparis Detail View (Zoomed)

Implementation of the Searcher

Due to the dynamic nature of the Comparis website and its strong anti-scraping protections, a static
HTML parser such as BeautifulSoup or SelectoLax is insufficient. Instead, we employ Selenium - a
browser automation library that simulates full user interactions within a real browser window.

The process begins by launching a Selenium-controlled browser (e.g., Chrome), navigating to the Com-
paris homepage, and programmatically accepting the cookie banner. Next, the script fills in the search
parameters via the web interface and submits the query.

Once the apartment list is loaded, each listing element is parsed, and the relevant data fields are extracted.

44 6 IMPLEMENTATION

Because the browser must fully render the page and respond to DOM events between each step, the
script includes pauses (sleep) to ensure stability. As a result, scraping Comparis using Selenium takes
significantly longer - a typical session can last up to 3 minutes. In contrast, static HTML scraping (e.g.,
using SelectoLax) completes in under 10 seconds for comparable platforms.

The added robustness of Selenium comes at the cost of speed and resource usage. However, for platforms
with high bot protection or dynamic content loading, it remains one of the most reliable scraping options
available.

6.2.2 Search Interface and Data Model

The searcher modules implement a common interface to ensure consistency and modularity across all
platform-specific implementations. This abstraction allows new searchers to be added easily, without
requiring changes to the logic that uses them.

The interface is defined as follows:

1 class ApartmentSearcherInterface(ABC):

2

3 @abstractmethod

4 def getApartments(self,

5 chatbot_id: str,

6 place: str,

7 radius: float,

8 rooms: int,

9 price: float) -> List[SearchResult]:

10 pass

This interface defines a single method: getApartments. It receives the necessary search parameters,
including the chatbot id (used to assign search results to a specific user session), as well as location-
specific constraints such as place, radius, rooms, and price.

The method returns a list of SearchResult objects - a unified data model for apartment listings,
defined as follows:

1 class SearchResult(models.Model):

2 id = models.AutoField(primary_key=True)

3 chatbot_id = models.CharField(max_length=100, null=True, blank=True)

4 address = models.CharField(max_length=255)

5 living_space = models.IntegerField()

6 rooms = models.FloatField()

7 price = models.IntegerField()

8 url = models.URLField()

9 available = models.BooleanField()

10 liked = models.IntegerField(default=0) # 1 = liked, 2 = disliked, other = no feedback

11 hide = models.BooleanField(default=False)

12 pined = models.BooleanField(default=False)

This model encapsulates all relevant data for a single apartment, including metadata such as address,
living space, price, and rooms, as well as additional attributes related to user interaction and
apartment state.

6.2 Data Gathering Engine 45

While the feedback (e.g., liked, hide, pined) could be separated into a dedicated feedback model,
this integration was chosen deliberately. Since each apartment listing can only be associated with one
feedback state, a one-to-one relationship would introduce unnecessary complexity in the frontend. Com-
bining this information into the SearchResult simplifies API responses and reduces the number of
network requests required to render apartment lists.

Two additional fields, available and pined, support further interaction logic:

• available: Indicates whether the apartment is still listed on the source platform. This flag is
automatically updated during subsequent searches.

• pined: Used to highlight specific listings in the UI (e.g., recommended or important offers).

This design strikes a balance between data normalization and frontend performance, favoring simplicity
and responsiveness in the user-facing components.

6.2.3 Search Orchestrator

The orchestration of apartment searchers takes place within the middleware. Each search request is
handled by the method searchForApartments, which receives a searchQuery object. This
object contains all relevant parameters for the apartment search (e.g., location, radius, number of rooms,
price). The chatbot ID is added to the arguments before dispatching the searchers.

To reduce total wait time and improve responsiveness, the system leverages a ThreadPoolExecutor,
allowing all registered searchers (e.g., for ImmoScout24 and Comparis) to run in parallel. Each searcher
is called with the same set of arguments through the shared interface described previously.

The results returned by each thread are collected and stored directly in the database. Importantly, no data
is returned immediately to the frontend from this function.

Instead, the frontend polls the middleware at regular intervals to check for newly available apartment
results. This asynchronous architecture ensures loose coupling and avoids blocking operations.

1 def searchForApartments(self, searchquery):

2 chatbot_id = searchquery.chatbot_id

3 args = (chatbot_id, searchquery.location, searchquery.radius,

4 searchquery.rooms, searchquery.price)

5 searchers = [self.immoscout_searcher, self.comparis_searcher]

6

7 all_results = []

8

9 with ThreadPoolExecutor() as executor:

10 futures = [executor.submit(searcher.getApartments, *args)

11 for searcher in searchers]

12

13 for future in futures:

14 try:

15 result = future.result()

16 all_results.extend(result)

17 except Exception as e:

18 print(f"Fehler bei einem Searcher: {e}")

19

20 self.searchresult_repository.saveSearchResults(all_results)

46 6 IMPLEMENTATION

6.3 Middleware

The middleware serves as the unified controller for data flow and system communication. It exposes
APIs that enable clients to perform CRUD (Create, Read, Update, Delete) operations while abstracting
away the underlying implementation details.

In our project, the middleware is implemented using Django REST Framework. This choice pro-
vides several advantages, including:

• Built-in serialization for handling complex data structures.
• Flexible URL routing.
• Scalability and performance optimization features.
• A rich ecosystem of third-party libraries and extensions.

Overall, Django REST offers a solid foundation for building a fast, scalable, and flexible middleware
layer.

The middleware fulfills four main tasks (see numbered elements in the following figure):

1. Routing and Endpoints - Accepting incoming API requests and directing them to the correct
handlers.

2. Validation - Ensuring that incoming requests are well-formed and contain valid data before pro-
cessing.

3. Database Communication - Reading from and writing to the database as needed.
4. Business Logic Handling - Executing the core application logic, including interactions with ex-

ternal services.

Middleware

API-Layer

API-Entrypoint

Validation-Layer

Model

Business-Logic

4. Business Logic
HandlingInterceptor

Request-
Interceptor

Repository

Database-
Interface

Database

Database

Data-Gathering-
Module

Searcher

Apartment-
Searcher

1. Routing and
Endpoints

2. Validation

3. Database
Communicatin

Figure 6.9: Numbered Middleware Diagram

6.3 Middleware 47

6.3.1 Routing and Endpoints

With the urls.py file in Django REST, endpoints can be defined and linked to specific classes for
handling requests:

1 urlpatterns = [

2 path('apartments/', ApartmentLogicView.as_view()),

3 path('apartments/all', ApartmentLogicView.as_view()),

4 path('apartments/searchquery', ApartmentLogicView.as_view()),

5]

All requests are directed to the ApartmentLogicView, which inherits its HTTP method definitions
(e.g., get, put) from Django’s APIView:

1 def get(self, request):

2 def put(self, request):

For the three endpoints above, an if-else statement is currently used to determine which action to
perform. Since there are only two GET methods and one PUT method, creating additional view classes
would add unnecessary complexity.

6.3.2 Validation

Validation of incoming parameters happens inside the get and put methods. If required fields (e.g.,
price) are missing, the middleware assigns default values (e.g., -1) so that downstream components
can identify unset parameters. Additional validations (such as range checks for numeric values or format
checks for URLs) ensure robust handling of user input.

48 6 IMPLEMENTATION

6.3.3 Database Communication

To reduce coupling between the database and the middleware, all database operations are abstracted
behind repository interfaces. This design allows the underlying database implementation to be swapped
without affecting the business logic.

For example, at the start of the project, a Redis in-memory database was used for rapid prototyping.
Thanks to the interface-based design, switching to PostgreSQL for production required minimal code
changes.

1 class SearchResultRepositoryInterface(ABC):

2

3 @abstractmethod

4 def saveSearchResult(self, result: SearchResult) -> SearchResult:

5 pass

6

7 @abstractmethod

8 def updateSearchResult(self, updated_result: SearchResult) -> SearchResult:

9 pass

10

11 @abstractmethod

12 def saveSearchResults(self, results: List[SearchResult]) -> List[SearchResult]:

13 pass

Each entity has its own repository interface and a concrete implementation class, ensuring modular and
maintainable database access.

6.3 Middleware 49

6.3.4 Business Logic Handling

Business logic in the middleware is distributed across multiple service classes. Key responsibilities
include:

• Creating and populating SearchQuery objects for the apartment searchers.
• Scheduling search jobs and executing them in predefined time slots.
• Intercepting API calls to enrich them with metadata, such as chatbot ID, user role, or email address.
• Managing middleware configuration, including:

– Defining allowed CORS origins.
– Setting authentication and authorization rules.
– Registering and enabling/disabling specific searcher modules.

This separation ensures that the middleware remains both adaptable to future changes and easy to main-
tain. Such a workflow can be represented as the following simplified sequence diagram:

Sequence Diagram
Middleware

urls Interceptor View Search-
Orchestrator Searchers Repository-

Interface

HTTP apartments

process_request(request)

get(request)

queueSearchQuery(query)

getApartments(...)

saveSearchResults(searchResults)

Apartments
Apartments

HTTP 200 OK

Figure 6.10: Middleware Sequence Diagram

In this example, the client calls an endpoint to submit a SearchQuery, which specifies the apartment
search parameters. In our current implementation, the search is triggered immediately upon receiving
the query.

The View component returns an HTTP 200 OK response to acknowledge receipt of the request - with-
out including the apartment data itself. The actual search process is handled asynchronously: the mid-
dleware invokes the relevant searchers, which gather the apartment listings in parallel.

Meanwhile, the frontend periodically polls the middleware at fixed intervals to check whether new results
have been stored in the database. Once the data becomes available, it is retrieved and displayed to the
user.

50 6 IMPLEMENTATION

6.4 Relocation Dashboard

The Relocation Dashboard serves as the central interface between Swissplatz staff and the underlying
system logic. It replaces many of the manual processes Swissplatz previously carried out, combin-
ing apartment search, customer feedback management, and the ability to obtain additional information
through the chatbot. In future projects, the dashboard can be extended to include further functionality.

Upon opening the dashboard, the user is first presented with the Relocation Chatbot Overview. If there
is no existing chat, the overview automatically creates a chat and we start in the Relocation Dashboard.

Figure 6.11: Relocation Dashboard with Empty Chat

The chatbot greets the user and subtly demonstrates multilingual capabilities. From here, staff can inter-
act with the bot, ask questions, and enter customer preferences.

The chatbot guides the user by requesting the information required to initiate an apartment search. It
can also assist with additional relocation-related queries, such as identifying the sunniest locations in
Switzerland or estimating realistic rent-prices.

Once all required preferences have been collected, the chatbot summarizes them and triggers the apart-
ment search. When results are found, the layout automatically changes to a 2/3-1/3 split, with the chatbot
occupying one-third of the view and the apartment list taking the remaining space.

6.4 Relocation Dashboard 51

Figure 6.12: Relocation Dashboard with Search Results

The apartment list offers features such as pinning, liking, disliking, and selecting listings for export to
Excel, which Swissplatz still uses for client reporting.

When new apartments are found in a subsequent search, older listings that are not pinned are automat-
ically hidden, as they no longer match the updated preferences. However, a toggle option allows all
listings (old and new) to be displayed.

From the dashboard, users can also access an overview of all active chatbots and create new ones. This
ensures that Swissplatz can maintain a dedicated chatbot for each customer.

Figure 6.13: Relocation Chatbot Overview - Chatbot List

In the long-term vision, the goal was for every Swissplatz customer to directly use their own chatbot
instance to search for apartments independently. Due to legal uncertainties, this was not part of the
current project scope, so the chatbot interactions are orchestrated by Swissplatz staff via the Relocation
Dashboard.

52 6 IMPLEMENTATION

6.5 Chatbot / AI assistant

This chapter describes the transition from the conceptual design to the fully implemented system. It
focuses on the technical decisions, implementation steps, and integration of each module, ensuring that
the relocation assistant functions reliably and meets the specified requirements.

6.5.1 Technology Decision for Chatbot

When selecting a chatbot technology, several providers were evaluated: OpenAI GPT-4o, Anthropic
Claude, and Microsoft Azure OpenAI. The decision was based on the following criteria:

• Cost per 1,000 tokens (input/output separately).
• Quality of responses and multi-language support (German/English).
• Latency and performance.
• API flexibility (function calls, system prompt, context length).
• Data privacy and hosting options.

This table shows a comparison of the main options.

Criteria OpenAI GPT-4o Anthropic Claude
4

Azure OpenAI
(GPT)

Cost / 1K Tokens $0.0025 (in), $0.01
(out)

$0.003 (in), $0.015
(out)

Same as OpenAI,
plus Azure fees

Max Context
Length

128k tokens 200k tokens 128k tokens

Latency Low (fast infer-
ence)

Medium Low

Language Support Excellent (DE/EN) Excellent (DE/EN) Excellent (DE/EN)

Privacy US-based, SOC2
compliant

US-based Azure compliance,
EU hosting possi-
ble

Table 6.1: Comparison of chatbot provider options

There were more options of creating chatbots, which seemed even more appealing due to it’s easyness.
Examples are Botpress, where we initially created a chatbot with our needed prompt for testing purposes.
The integration would have been really simple, since botpress would be hosting the chatbot, and we could
have just integrated into our website. But financally it wouldn’t have made sense, since the prices were
89 US-Dollars per month to get 5’000 incoming messages.

Considering all these factors and after consulting it with our customer and expert, OpenAI GPT-4o was
chosen due to its balance between cost, performance, and API features.

6.5 Chatbot / AI assistant 53

6.5.2 Backend Implementation

The backend of the chatbot was implemented in Python using Flask for the HTTP API.

The core logic is handled in ChatbotGpt.py, which:

• Loads the API key and connects to OpenAI’s GPT model.
• Defines a strict system prompt with a fixed question protocol for housing requests.
• Formats the chat history into OpenAI’s API format.
• Sends user messages to the GPT model and returns responses.

The ChatRoutes.py file exposes REST endpoints for:

• Creating, updating, and deleting chatbot sessions.
• Sending and retrieving messages.
• Listing all chatbots.

The conversation history is stored in the database repository with the interface
ChatRepositoryInterface, ensuring consistent method signatures.

Flask API Chat Service OpenAI API Repository /
DatabaseFrontend

Display Response

Build + send to OpenAI
sendMessage(message)

Return Bot Response

Request completion

Return completion

Save bot response

Save User message

Sequence Diagram Chatbot

User Input

Return Message

Figure 6.14: Sequence diagram of chatbot message handling

This figure illustrates the request flow from the frontend to the AI model.

54 6 IMPLEMENTATION

6.5.3 Frontend Integration

The frontend was implemented in Angular, with a dedicated ChatbotService to handle all HTTP
requests to the backend. The decision for using Angular was made, based on our prior experience
with the framework. This allowed us to work efficiently and focus more on implementing the project-
specific logic rather than learning new tooling. The built-in modules and strong CLI work well for our
application, which made our decision for the framework rather easy.

The main UI component (ChatbotComponent) is responsible for:

• Displaying the conversation history.
• Sending new messages to the backend and showing a loading indicator while waiting for a response.
• Allowing the chatbot’s name to be edited.
• Automatically parsing the AI’s summary into a structured search query and broadcasting it to the

housing search form.

The HTML template (chatbot.component.html) uses Angular Material for styling and responsive
layouts.

6.5.4 Data Flow

Figure 6.15: Chatbot interaction

When a user sends a message:

1. The frontend calls
POST /chatbots/{id}
with the message.

2. The backend saves the user’s
message in the database.

3. The backend compiles the full
conversation and sends it to
OpenAI’s GPT-4o API.

4. The AI’s response is saved in the
database and returned to the fron-
tend.

5. The frontend updates the chat
view and, if a search query is de-
tected, triggers the search form
autofill.

This setup makes the interaction for the
user smooth and simple. They just type
their answers, and in the background
the system takes care of saving the mes-
sages, asking the AI for a reply, and fill-
ing in the housing search form when
all information is complete. It con-
nects the conversation directly to the
search process, which helps avoid un-
necessary manual work and makes the
overall workflow smoother.

6.6 Integration with Existing Systems 55

6.6 Integration with Existing Systems

Swissplatz currently hosts its public website on Wix. The initial goal of the project was to integrate
our application into the existing Wix site via an iFrame. Wix provides several tools to support such
integrations.

The communication between Wix and our application is handled through a message, which is send from
Wix to us. We then enhance our HTTP headers with this information, which enable the exchange of
user-specific information - for example, identifying the logged-in user and their role. This allows the
system to distinguish between administrators and regular customers.

To support this mechanism, custom header handling was implemented in the frontend, middleware,
and database layers. Although the project scope later shifted from a customer-facing solution to an
administrator-focused Relocation Dashboard, this integration code remains in the codebase for potential
future use.

Both the middleware and frontend include interceptors dedicated to this task. They extract user infor-
mation from incoming requests and, if necessary, enrich it with missing metadata. This is essential for
ensuring that API endpoints receive complete and consistent context data.

Embedding the application into Wix via iFrame is straightforward: Wix offers a built-in iFrame

component where a URL or IP address can be specified. Custom JavaScript can also be injected into the
Wix page to interact with Wix APIs and retrieve user data. For example, the following script enriches
HTTP calls with user information:

1 import { currentUser } from 'wix-users';

2

3 async function getEmailOfUser(currentUser) {

4 return await currentUser.getEmail();

5 }

6

7 async function sendCurrentUserToRelocationSite(currentUser) {

8 if (currentUser.loggedIn) {

9 const id = currentUser.id;

10 const role = currentUser.role;

11 const email = await getEmailOfUser(currentUser);

12

13 $w("#ip6-relocation-iframe").postMessage({

14 type: "CUSTOMER_INFO",

15 payload: { id, role, email }

16 });

17 }

18 }

19

20 $w.onReady(function () {

21 sendCurrentUserToRelocationSite(currentUser);

22 });

In this example, the currently logged-in user is imported via the Wix wix-users module.
The $w.onReady() function triggers once the page has loaded, calling our custom function to send
user data to the declared iFrame ID. On the frontend side of our relocation application, this data can
be received and processed accordingly. At present, this code is not active in production, as the relocation
application is not yet deployed within Wix.

56 6 IMPLEMENTATION

6.7 Database Model

To persist application data, the system relies on a dedicated database layer. In the code, each database
table or entity is represented through an interface, while the concrete implementation remains hidden
within the respective subsystem. This abstraction layer enables the database technology to be swapped
without requiring changes in higher-level business logic. It also improves testability and allows for
parallel development, as the application logic can be implemented and tested before the final database
technology is chosen.

6.7.1 Choice of Database Technology

At the start of development, Redis was selected as the database technology. This choice was made
because Redis offers a flexible, schema-less data model, allowing for rapid prototyping without the
need to enforce strict typing. Its in-memory nature also provides fast read/write operations, which was
beneficial during early iterations of the project.

Later, the database layer was reimplemented using PostgreSQL to take advantage of its strong typing,
relational integrity, advanced query capabilities, and ACID-compliant transaction model. PostgreSQL is
also more suitable for long-term scalability and analytical queries.

6.7.2 Challenges with PostgreSQL Integration

While the PostgreSQL implementation worked in isolation, issues arose in the integrated, multi-service
setup. Both the middleware and the chatbot service require direct database access, but they maintain
separate entity ownership and different startup sequences. This led to conflicts, especially when the
middleware attempted to resolve primary keys generated by the chatbot service during its own startup
phase. Due to PostgreSQL’s strict schema enforcement, these conflicts caused service startup failures.

Redis, with its more relaxed typing and flexible schema handling, did not suffer from these issues. As a
result, Redis remains the primary database in the current deployment. However, the PostgreSQL imple-
mentation is still part of the repository and can be re-enabled at any time thanks to the interface-based
abstraction layer.

6.7.3 Future Migration Path

The current architecture is designed so that migrating to PostgreSQL or another database technology will
only require implementing the corresponding repository interfaces. This minimizes risk and development
effort when switching technologies in the future.

6.7 Database Model 57

6.7.4 Evolution of the Data Model

During the conceptual design phase, a simplified database schema was proposed (see Figure 6.16). It
consisted of only four core tables or classes, representing the minimal set of entities required to operate
the system.

Simple database
structure

Has

Apartment

Street

Place

Living space

Rooms

Price

URL

Chatbot

Messages

Preferences

Place

Living space

Rooms

Radius

Price

Feedback

Comment

Opinion

Pinned

Seen

Hide

Has

Search for

Figure 6.16: Conceptual and Simplified Database Structure

As development progressed, additional requirements and features led to a more complex schema. This
evolved structure includes additional datatypes, primary and foreign key relationships, and two entirely
new tables: Queue and Timeslot. These tables are essential for scheduling periodic apartment
searches and updating the database at defined intervals.

58 6 IMPLEMENTATION

Abbreviation:
NN = not null
FK = Foreign key
PK = Primary key

1

0...n

SearchQuery

Id: int not null PK

Customer_Id: string NN FK

location: string NN

radius: int

rooms: float

price: int

1

1

SearchResult

Id: int not null PK

Chatbot_Id: string NN FK

address: string NN

living_room: int NN

rooms: float NN

price: int NN

url: string NN

available: boolean NN

pined: boolean NN

liked: number NN

hide: boolean NN

1

1

Queue

id: int not null PK

search_query_id: int NN FK

Timeslot: int NN FK

Timeslot

id: int not null PK

time_in_hour: int NN

1

1

Chatbot

id: int not null PK

name: string

created_at: string NN

updated_at: string NN

1

1

Message

id: int not null PK

Chatbot_Id: string NN FK

content: string NN

from_user: boolean NN

timestamp: string NN

IP6 Relocation Database

Figure 6.17: Complex Database Structure

Another significant change is the merging of the feedback entity into the SearchResult table. As
explained earlier, this integration reduces the number of database queries required by the frontend and
simplifies the overall data retrieval process.

The result is a data model that is more expressive, operationally efficient, and better aligned with the
system’s real-world usage patterns.

6.8 Docker-based Containerization 59

6.8 Docker-based Containerization

To ensure scalability, maintainability, and deployment flexibility, each subsystem is containerized. This
means that the Frontend, Middleware, Chatbot, Database, and Reverse Proxy run as independent
services, each packaged with its own dependencies and runtime environment.

Scalability and Resource Management

Containerization allows fine-grained control over resource allocation. For example, the Middleware
service - responsible for executing apartment searches - can be allocated more CPU cores or memory, or
horizontally scaled to multiple replicas when the workload exceeds a given threshold. Such scaling can
be configured dynamically in production environments using orchestration tools (e.g., Docker Swarm or
Kubernetes).

Networking and Communication

All containers run in a shared Docker network, which enables service-to-service communication via
internal DNS names (e.g., middleware can reach database simply by using its service name in the
connection string). This ensures isolation from the host system and consistent communication across
environments.

Persistent Data

While most containers are stateless, the database container
(e.g., Redis or PostgreSQL) requires persistent storage. Docker volumes are used to retain data across
container restarts and deployments, ensuring no data loss.

Development and Deployment

For local development, containers can be started with hot-reloading enabled (e.g., Angular dev server,
Python auto-reload). In production, optimized builds are used to reduce image size and improve perfor-
mance. The only required dependency for deployment is Docker itself; all other dependencies (Python,
Angular, Node.js, etc.) are downloaded and configured within the container images.

60 6 IMPLEMENTATION

Orchestration with docker-compose

The docker-compose.yaml file defines and starts all services with a single command. Each subsys-
tem has its own Dockerfile, tailored to its needs. For example, the Chatbot service’s Dockerfile:

1 FROM python:3.10-slim

2

3 WORKDIR /app

4

5 COPY requirements.txt ./

6 RUN pip install --no-cache-dir --upgrade pip

7 RUN pip install -I --no-cache-dir -r requirements.txt

8

9 COPY . .

10

11 CMD ["python", "run.py"]

Here, the base image specifies the correct Python runtime, dependencies are installed from
requirements.txt, and finally the service is started with the appropriate entrypoint.

Security and Isolation

By running each subsystem in its own container, the architecture benefits from process isolation. Poten-
tial failures or vulnerabilities in one service do not directly affect the others, improving both reliability
and security.

Overall, containerization makes the relocation platform easier to develop, deploy, and scale, while main-
taining a clean separation of concerns between subsystems.

61

7 Evaluation

This chapter evaluates the developed system in terms of its usability, performance, and overall effective-
ness compared to existing solutions. The goal is to present clear, fact-based results that show whether
the requirements defined at the beginning of the project have been met, and to identify any areas that still
need improvement. While subjective impressions and broader interpretations are discussed later in the
Discussion chapter, the focus here is on measurable outcomes and concrete observations gathered during
testing.

7.1 Usability testing

7.1.1 Why are Usability Tests needed?

Usability testing is a key part of building any software that is meant to be used by real people. Even if a
system is technically correct and complete, it will not be successful if users don’t understand how to use
it or struggle to complete important tasks. A usability test helps to uncover exactly those problems early.

Especially in our case, where the system is used as a daily tool by Swissplatz mediators, it’s important
that the workflow feels smooth, efficient, and intuitive. A confusing interface or unclear logic could slow
them down and reduce trust in the tool. The usability test gives us real-world feedback and helps us make
the tool better, not just from a technical perspective, but from a user experience point of view. It also
helps us to avoid spending time on features that are not useful, and instead focus on what really matters
to the users.

To check how easy and effective our system is to use, we conducted usability tests with real users our-
selves. The feedback from these tests helped us improve the interface and make sure the system is clear
and efficient to use.

To evaluate the usability of our system, we conducted a structured usability test with several test partic-
ipants. The goal was to find out how well users could interact with the tool, how intuitive the interface
was, and whether the chatbot and dashboard supported a smooth workflow.

62 7 EVALUATION

7.1.2 Execution of the usability test

The test was based on a realistic usage scenario that reflects the daily tasks of Swissplatz mediators.

Participants

A total of eight participants were randomly selected for the usability test. All of them had at least basic
computer skills, and some were already familiar with using AI-based chatbots.

According to usability research by Nielsen Norman Group [10], testing with just five users is often
enough to uncover the majority of usability problems. However, since we had more volunteers available,
we decided to include all eight participants in order to gain broader feedback and identify additional edge
cases.

Equipment and Pre-Test Instructions

The usability test was conducted using a laptop or desktop computer with a stable internet connection
and a modern web browser such as Chrome, Firefox, or Edge. The participants accessed the test version
of the application through a dedicated URL. Before starting, they were instructed to open a browser of
their choice, navigate to the test link where the application was running, and take a few moments to
familiarize themselves with the layout and structure of the tool. Every participant received short and
brief instructions on what usability testing is about, and what the final goal is.

Tasks

Each participant was asked to complete the following step-by-step tasks using the application:

1. Create a new chatbot
2. Name the Chatbot ”Usability Test X”
3. Provide search preferences to the chatbot:

• Location: Baden, Switzerland
• Minimum number of rooms: 2.5
• Maximum budget: CHF 2,500
• Search radius: 10 km

4. Pin the first two apartments from the result
5. Mark the first pinned apartment as ”liked”
6. Mark the second pinned apartment as ”disliked”
7. Open the third apartment from the results and check for additional information.
8. Use the filter function to show all available apartments.

During the test, we observed how the participants interacted with the system. We paid attention to any
visible confusion or mistakes. Testers were encouraged to think out loud and comment on anything that
seemed unclear, or frustrating.

7.1 Usability testing 63

Evaluation

To be able to measure usability in a structured way, we tracked each participant’s progress using a
predefined evaluation table:

Task successful? Duration Problems Comment
1
2
3
4
5
6
7
8

Figure 7.1: Measurement table

This table contained one row per task and allowed us to record:

• whether the task was completed successfully
• how long the participant needed
• whether any problems occurred
• and additional comments or observations from the test supervisor

Each task was evaluated individually to see where users had difficulties, which steps were completed
without hesitation, and how long the process took in total. This helped us identify which parts of the
interface worked well and which required improvement. The comment field was especially useful to
capture spontaneous feedback and insights that would not appear in numeric ratings.

The collected data was then summarized and compared across all participants to reveal common patterns
and usability issues.

64 7 EVALUATION

Participants evaluation

At the end of the test, participants were asked to provide feedback and rate the application in several
categories.

The tool was easy to
use

1 5

I could complete the
tasks without help

1 5

The layout and

structure made sense
1 5

I would use this tool
for my daily work

1 5

I imagine most people
would learn to use this

system quickly
1 5

I needed to learn a lot
before I could use that

system effectively
1 5

The tool was more
efficient than the

usual way for
searching apartments

1 5

I would prefer that tool
over the usual way

1 5

Figure 7.2: Participants evaluation table

With this additional information, we earned more insights and gave the participants a chance to add more
feedback to the application and experience as well.

7.1 Usability testing 65

7.1.3 Test Results

The usability tests provided valuable insights into how well the system supports users during the apart-
ment search process. All eight participants were able to complete the given tasks successfully, although
a few minor issues and usability challenges were observed along the way.

Most users found the system easy to use, and the core workflow was generally understood without the
need for help.

Based on the evaluation table and the recorded feedback, we identified the following key findings:

• Language inconsistency: Switching between English and German in the user interface caused
confusion. A consistent language setting is recommended.

• Chat input field size: The text input field was considered too small. Some users had difficulty
seeing what they were typing, especially for longer messages.

• Repeated questions: The chatbot sometimes repeated previously asked questions, which disrupted
the conversation flow.

• Pinning functionality: The pinning functionality was unclear in regards of how it differed from
the ”like” option.

• Cursor reset on tab change: When switching tabs and returning to the application, the cursor was
no longer active in the input field, which broke the typing flow.

• Multi-location input: The chatbot did not support entering more than one location at once, which
some users expected.

• Search success and completion: Despite the mentioned issues, all participants managed to finish
the tasks and find suitable apartments. The general structure was considered clear.

The collected feedback from all participants was evaluated and averaged across eight key criteria. The
resulting scores (on a scale from 1 (strongly disagree) to 5 (strongly agree)) give a clear picture of how
the application performed from a user experience perspective.

Criteria Score
1 4.25
2 4.5
3 4.875
4 3.875
5 4.375
6 2
7 3.25
8 4.125

Figure 7.3: Results of criteria

Overall, the average scores were clearly above 4.0 in most categories, which shows that the application
is already quite usable and intuitive for its target group. Still, targeted refinements to the chatbot logic
and feedback design could further enhance the experience.

66 7 EVALUATION

7.2 Requirement Fulfillment

The evaluation checked if the system meets the requirements set at the start of the project. Most of
the main goals were reached: mediators can create and manage chatbot sessions, collect client prefer-
ences through a simple conversation, and get housing listings from multiple platforms using the scraping
modules. The shared dashboard works for real-time collaboration and feedback between chatbot and
mediators.

Non-functional needs were also covered. Usability tests showed that the interface is mostly easy to use,
with all participants able to finish their tasks. Some smaller issues, such as mixed languages in the
interface or the chatbot asking the same question twice, were found but did not stop the system from
working as intended.

In summary, the system meets its key requirements, with only a few details left to improve in future
updates.

7.3 Comparison to the State of the Art

Compared to existing Swiss housing platforms such as ImmoScout24, Comparis, or Flatfox, our solution
offers significant advantages:

• Real-time collaboration between client and mediator in a single interface.
• Automatic reuse of client preferences for search and application preparation.
• Integrated conversational guidance that supports multiple languages.

While current market platforms act primarily as search engines, our solution bridges the gap to full
relocation support by combining powerful search capabilities with process guidance and communication
tools. This aligns with the gap identified in the State of the Art chapter and shows the added value of
integrating AI-assisted interaction.

67

8 Discussion

8.1 Addressing research questions

What are the key challenges and best practices in retrieving and processing data from various plat-
forms to enable automation in the rental mediation process? Retrieving and processing data from
different housing platforms proved to be one of the most challenging parts of the project. Many platforms
in Switzerland do not offer public APIs, which means that data must be collected either through static
HTML scraping or by using tools such as Selenium for dynamically rendered content. This comes with
technical hurdles like anti-bot measures, variable HTML structures, and inconsistent data formats. In
our implementation, we used a modular scraping architecture with separate “searcher” modules for each
platform. These modules follow a common interface and can be run in parallel by an orchestrator, which
speeds up the process and keeps the design extensible. A central middleware layer handles validation,
logging, and database interactions, ensuring that scraped data is normalized into a consistent format with
fields for address, size, price, and status. Legal and ethical considerations, such as respecting robots.txt
and avoiding excessive request rates, were also part of the design from the beginning. This combination
of technical flexibility, clear structure, and compliance resulted in a robust and maintainable data pipeline.

How can the user experience be optimized to simplify data input and interaction between clients
and mediators and how is it perceived by users? The user experience was designed to make data
input and communication between clients and mediators as smooth as possible. Instead of long static
forms, the platform uses a conversational chatbot to guide users through the preference-gathering pro-
cess. This allows questions to be asked one at a time and in a natural order, while the system automat-
ically summarizes the answers and converts them into a structured search query. The preferences are
stored centrally and reused throughout the process, so users do not have to enter the same information
multiple times. Clients and mediators interact through a shared dashboard, where search results appear
in real time and can be marked as liked, pinned, or hidden. Feedback actions are immediately visible
to both sides, making collaboration easier. The system also supports multilingual communication and
provides clear status updates, which is especially valuable for clients unfamiliar with the Swiss housing
market. Usability tests showed that users appreciated the reduced manual effort, the clear structure, and
the feeling of transparency in the process. Some minor issues, such as inconsistent language or unclear
button functions, were identified and fixed, demonstrating the benefit of iterative testing.

68 8 DISCUSSION

What are the possibilities of artificial intelligence that can be utilized to automate processes in the
rental mediation workflow? AI plays a supporting but important role in the current version of the
platform. At present, it is mainly used for conversational intake of client preferences and for answering
general questions about the process. The chatbot can clarify missing details and guide users towards
the next steps without replacing the human mediator. While this already improves efficiency, there is
room for expansion. Literature such as Subedi’s work on the Landlord-Tenant Rights Bot shows how
retrieval-augmented generation (RAG) can deliver accurate, context-aware legal information. Similarly,
research on hostel recommendation systems demonstrates the potential for ranking results based on con-
tent similarity to user preferences. In the future, the platform could integrate these techniques to provide
personalized ranking of search results and automated preparation of application documents. However, it
will be important to maintain a human-in-the-loop approach, where AI suggestions are transparent and
always subject to review by the mediator. This balance between automation and human oversight can
increase speed and scalability without reducing trust in the process.

Summary

To wrap up our work, let’s briefly revisit the starting point of Swissplatz. Out of the three main phases of
their workflow - Searching, Administration, and Viewing - our developed solution focuses on, and help
with automating the Searching phase.

We built a solid platform foundation capable of supporting processes for all three phases, with the current
emphasis on search. Swissplatz employees can now manage the entire searching process in one place:
documenting customer preferences, running targeted searches for suitable housing options, and keeping
everything organized without switching between multiple tools.

A key part of this solution is our chatbot, which assists employees during the search. It provides person-
alized answers, guides them through the process, and automatically searches for apartments based on the
information provided - making the search faster, more structured, and easier to handle.

69

9 Conclusion and future work

Researching the state of the art for this project was not easy. Because the use of Artificial Intelligence
in relocation services is still very new, there is little documentation or research available. The industry is
also not yet very advanced in this area, so we had to rely on smaller related studies and examples from
similar fields. Still, this research gave us a good starting point and helped us define clear and realistic
goals for the project.

During development, legal uncertainties and communication with third-party platforms slowed us down.
Some questions about data handling and possible access for end users made it necessary to rethink parts
of the project. In the end, we found a good solution by changing the product so that it is now used by
Swissplatz employees instead of external clients. Although it changed the course of our project, it turned
out to be the right choice and worked to our advantage.

Data scraping was another big challenge. It was a new topic for our team, and many platforms made it
difficult for us with technical restrictions. Several times we had to change our approach when websites
updated their structure or blocked automated requests. Our early planning helped a lot here, because it
allowed us to react quickly and keep the project on track.

We also had to make sure that the different parts of the system - frontend, middleware, chatbot, and
database - worked well together. Clear structure and separation between components were important to
make the system reliable and easy to improve later.

Overall, we can say that we are very happy and proud with the result. The solution works well for the
searching phase and creates a strong base for future improvements. We learned that flexible design, early
risk management, and the ability to adapt are very important when working with new technologies. We
also saw the value of close collaboration with stakeholders, continuous testing, and building a solution
that can grow with changing requirements.

9.1 Open challenges

One of the ongoing challenges is the constantly changing nature of the platforms we scrape data from.
Whenever a platform updates its structure or security measures, our scraping methods may need to be
adapted, which can slow down the process.

Another challenge is the long-term goal of unifying all functions into one single platform. While our cur-
rent solution already centralizes many tasks, developing additional tools for Swissplatz will be necessary
to fully replace their existing workflows.

Adding more data sources also remains difficult. Many platforms protect their data with strong security
measures, making it hard to access the information in a structured way. This often requires creative
technical solutions and careful planning.

Finally, some legal questions remain unresolved. Data protection regulations and unclear platform poli-
cies mean that legal risks could still arise in the future, so continuous review and adaptation will be
necessary.

70 9 CONCLUSION AND FUTURE WORK

9.2 Further development potential

Looking ahead, there are several ways the system could be expanded to provide even greater value for
Swissplatz. One area is the development of additional tools to support employees in their daily work,
such as integrated comment functions, direct chat with clients, and a more advanced feedback system.

Another improvement would be to increase the capabilities of the AI. This could include gathering more
details from housing advertisements through the chatbot, offering better recommendations, and analyzing
user preferences more precisely to improve search results.

In the long term, the platform could be redesigned so that clients themselves become the direct end users,
rather than Swissplatz acting as an intermediary. Finally, the system could be extended to cover the other
two phases of the relocation process - administration and viewing - in order to create a fully automated
and end-to-end solution.

By following these directions, the platform could evolve from a specialized internal tool into a fully
integrated relocation assistant that automates the entire process and significantly improves the customer
experience.

SOURCES 71

Sources

[1] Altair Global, Exploring the opportunity of ai in corporate relocation, Accessed: 2025-08-10, Apr.
2024. [Online]. Available: https://www.altairglobal.com/news/exploring-
the-opportunity-of-ai-on-corporate-relocation/.

[2] N. Subedi, Empowering housing equity: An ai-driven chatbot for landlord-tenant rights and com-
munity stability, SSRN Electronic Journal, Preprint, accessed: 2025-08-10, 2025. DOI: 10.2139/
ssrn.5227597. [Online]. Available: https://papers.ssrn.com/sol3/papers.
cfm?abstract_id=5227597.

[3] F. O. Isinkaye, I. G. AbiodunBabs, and M. T. Paul, ”Development of a mobile-based hostel location
and recommendation chatbot system“, Int. J. Inf. Technol. Comput. Sci, vol. 14, pp. 23–33, 2022.

[4] Oracle. ”What is a chatbot?“ Accessed: 2025-08-09, Accessed: Aug. 9, 2025. [Online]. Available:
https://www.oracle.com/chatbots/what-is-a-chatbot/.

[5] R. Morshedi, B. Chu, E. Huang, and L. Ivers, ”Web scraping: Applications in infrastructure plan-
ning“, New South Wales, vol. 3, 2019.

[6] N. Medvidovic, ”On the role of middleware in architecture-based software development“, in Pro-
ceedings of the 14th international conference on Software engineering and knowledge engineer-
ing, 2002, pp. 299–306.

[7] Amazon Web Services. ”Was ist middleware?“ Accessed: 2025-08-14. [Online]. Available:
https://aws.amazon.com/de/what-is/middleware/.

[8] Matillion. ”The types of databases (with examples)“. Accessed: 2025-08-11. [Online]. Available:
https://www.matillion.com/blog/the- types- of- databases- with-

examples.
[9] Rivery. ”Database types guide“. Accessed: 2025-08-11. [Online]. Available: https : / /

rivery.io/data-learning-center/database-types-guide/.
[10] J. Nielsen. ”Why you only need to test with 5 users“. Nielsen Norman Group, Accessed: Aug. 9,

2025. [Online]. Available: https://www.nngroup.com/articles/why-you-only-
need-to-test-with-5-users/.

https://www.altairglobal.com/news/exploring-the-opportunity-of-ai-on-corporate-relocation/
https://www.altairglobal.com/news/exploring-the-opportunity-of-ai-on-corporate-relocation/
https://doi.org/10.2139/ssrn.5227597
https://doi.org/10.2139/ssrn.5227597
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5227597
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5227597
https://www.oracle.com/chatbots/what-is-a-chatbot/
https://aws.amazon.com/de/what-is/middleware/
https://www.matillion.com/blog/the-types-of-databases-with-examples
https://www.matillion.com/blog/the-types-of-databases-with-examples
https://rivery.io/data-learning-center/database-types-guide/
https://rivery.io/data-learning-center/database-types-guide/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/

72 SOURCES

Declaration of honesty

We hereby declare that we have written the present bachelor thesis independently and solely using the
sources indicated. All passages taken literally or in substance from the sources listed are marked in the
work as quotations or paraphrases. This bachelor thesis has not yet been published. It has neither been
made accessible to other parties nor submitted to any other examination authority.

Windisch, 13. August 2025

Name: Stefan Simic
Signature:

Name: Damjan Stojanovic
Signature:

73

A Appendix

A.0.1 Platform Requests E-Mail

1

Damjan Stojanovic (s)

From: Paulo Ribeiro <reply@message.flatfox.ch>
Sent: Montag, 10. März 2025 11:54
To: Damjan Stojanovic (s)
Subject: Re: Kontaktformular (de): OTHERS

[Sie erhalten nicht häufig E-Mails von reply@message.flaƞox.ch. Weitere InformaƟonen, warum dies wichƟg ist,
finden Sie unter hƩps://aka.ms/LearnAboutSenderIdenƟficaƟon]

Grüezi Herr Stojanovic

Vielen Dank für Ihr Interesse an Flaƞox und Ihre Anfrage bezüglich der API-Nutzung im Rahmen Ihrer Bachelorarbeit.

Leider können wir für externe Zwecke keinen API-Zugang anbieten. Unsere API ist nicht für eine allgemeine Nutzung
freigegeben, und wir haben technische Schutzmassnahmen implemenƟert, um einen umfassenden Datenabruf zu
verhindern.

Sollten Sie jedoch einzelne Inserate analysieren wollen, sehen wir darin grundsätzlich kein Problem.

Wir wünschen Ihnen viel Erfolg bei Ihrer Bachelorarbeit und stehen für weitere Fragen gerne zur Verfügung.

Freundliche Grüsse
Paulo Ribeiro

Flaƞox (AG), Speichergasse 31, 3011 Bern

info@flaƞox.ch

[731923cd-13ac-4402-bebc-72fd747f606a:1776]

Figure A.1: API Access request to Flatfox

1

Damjan Stojanovic (s)

From: info <info@immobilier.ch>
Sent: Mittwoch, 26. Februar 2025 15:14
To: Damjan Stojanovic (s)
Subject: Re: Demande de contact

Guten Tag,

Vielen Dank für Ihre Email.

Um Ihre Frage zu beworten, ist das Scraping von Daten auf immobilier.ch nicht erlaubt.

Wir wünschen Ihnen viel Erfolg für Ihre Bachelorarbeit.

Freundliche Grüsse.

Votre équipe immobilier.ch
Rue de Lausanne 42-44 - 1201 Genève
Tél : +41 (0)22 307 02 20

www.immobilier.ch
Mettez en avant vos objets : Top Listing / Highlight / Banner ciblée / Nos différents magazines

To help protect your privacy, Microsoft Office prevented automatic download of this picture from the Internet.
Une image contenant texte, intérieur, personne

Description générée automatiquement

To help protect you r priv acy, Microsoft Office prevented automatic download of this picture from the Internet.
Une image contenant texte

Description générée automatiquement

To help protect your privacy, Microsoft Office prevented automatic download of this picture from the Internet.
signature_2873410099

De : immobilier.ch <mail@immobilier.ch>
Date : mardi, 25 février 2025 à 23:06
À : info <info@immobilier.ch>
Objet : Demande de contact

The linked image cannot be displayed. The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location.

The linked
image cannot
be d isplayed.
The file may
have been
mov ed,
renamed, or
deleted.
Verify that
the link
points to the
correct file
and location.

 Vous n’obtenez pas souvent d’e-mail à partir de info@immobilier.ch. Pourquoi c’est important

Figure A.2: Data Scraping request to immobilier

74 A APPENDIX

A.0.2 First Version of Lo-FI prototype

Swissplatz

Customer Status
Customer 1 Request sent

Customer 2 In progress

Customer 3

Overview

Figure A.3: First Lo-Fi Prototype Admin overview

Swissplatz

Picture Adress Link Status
street 1 comparis.ch Request sent

street 2 immobilier.ch Request sent

street 3 homegate.ch Request sent

Customer Information
Geneva, 5km

3.5 rooms

parking: yes

Maximum rent: 2000.-

delete

delete

delete

Figure A.4: First Lo-Fi Prototype Customer Information

75

Swissplatz

Next

Where would you like to rent?

Geneva

Radius

5km

Figure A.5: First Lo-Fi Prototype Form Page 1

Swissplatz

Next

What is the maximum rent?

3.5

How many rooms should the flat have?

2000 CHF

Figure A.6: First Lo-Fi Prototype Form Page 2

76 A APPENDIX

Swissplatz

Next

Desired entry date

Yes

Parking required?

01.04.2025

Figure A.7: First Lo-Fi Prototype Form Page 3

Swissplatz

Send request

Your information:

Geneva, 5km

3.5 rooms

parking: yes

Maximum rent: 2000.-

Figure A.8: First Lo-Fi Prototype Summary

77

A.0.3 First Version of Hi-FI prototype

Figure A.9: First Prototype Form Screen

Figure A.10: First Prototype Loading Screen

78 A APPENDIX

Figure A.11: First Prototype Result Screen

79

A.0.4 Detailed Results of the Usability Tests

Figure A.12: Usability Testing Stefan Müller

Figure A.13: Usability Testing Pascal Vogt

80 A APPENDIX

Figure A.14: Usability Testing Simon Canay

Figure A.15: Usability Testing Andrin Vogel

81

Figure A.16: Usability Testing Cindy Chung

Figure A.17: Usability Testing Robin Meier

82 A APPENDIX

Figure A.18: Usability Testing David Hürlimann

Figure A.19: Usability Testing Sandro Fischer

83

A.0.5 Project agreement

Institute for Interactive technologies Bahnhofstrasse 6 5210 Windisch www.fhnw.ch/iit

Windisch, 19.03.25

Information on the project procedure & project agreement IP6 ' AI-based
assistant for personalized relocation '

Supervisor: Kevin Kim

Nitish Patkar

Client: Byung Yun Cho

Project duration: 11.02.2025 until 14.08.2025

Task

1. Familiarization

1.1 Expectations for the project process

Dates
Fix appointments early, i.e., reviews with the customer and about every 2-3 weeks a meeting ap-
pointment with your supervisors. Clarify any absences right at the start of the project.

Meetings
Meetings are basically intended to discuss the current status of the project, clarify questions, discuss
ideas and plan the next steps.
Send a list of agenda items and all other necessary documents to the supervisors. At the beginning
of each project meeting, explain the current status of the project, the progress and problems as well
as the planned steps.
You can use the meetings by arrangement and, if necessary, also for specific questions (e.B micro-
teaching, brainstorming, presentation of results or mentoring). However, come to a meeting with as
specific questions as possible.
Please record the discussed contents and decisions in a timely manner.

1.2 Specifications for the agreement

As a first task in your work you have to complete this agreement (cf. point 3). A first version should
be produced by 2-4 weeks (BB 4-6 weeks) after kick-off. For projects that re-quire technical analysis,
it may be useful to carry out a first implementation iteration before the sub-mission of the project
agreement. Please complete the following items:

Initial situation
Formulate the project and the initial situation in your own words.

Project vision
Describe which goals and results are to be achieved with the project. The vision serves to derive
quality criteria.

Project specific issues
In addition to the general questions, formulate 2-3 project-specific questions. These serve as a basis
for scientifically structured research and the derivation of suitable solutions.

Examples of questions and solutions:
• Which approaches do you use to reach the defined target group?

Solution approach: Development of concepts for user-centered approaches and implementation

Institute for Interactive technologies Bahnhofstrasse 6 5210 Windisch www.fhnw.ch/iit

of the user interface of the application, e.g., in the form of storyboards with a continuous user
story or GUI prototypes.

• With which technical concept do you achieve the desired solution?
Solution approach: Technology evaluation, development of technical solution concept (PoC),
definition of subsystem decomposition, architectural style and technologies.

• Which interaction concepts, interface designs and visual languages are suitable for your ap-
proach?
Solution approach: Development of interaction concepts and graphically carefully designed,
clearly structured imagery for interface design, which meet the requirements of an innovative
user experience.

• With which technical implementation do you meet the requirements for functionality, usability,
reliability, efficiency and maintainability?
Solution approach: Implementation of a executable application for a previously evaluated setup
and defined usage scenario based on suitable technologies and frameworks

• Correctness, usability and reliability are central to the successful introduction of the software.
How can you ensure and test them?
Solution approach: In-depth testing of correctness, usability and reliability, documentation of Test
results, demonstration of the fulfillment of the requirements by means of live test.

Methodology
Describe how the goals are achieved. Which methodologies do you use for this (e.g. Scrum, Agile,
scientific approach, etc.).

Planning
Create an initial project schedule. Define work packages and their deliverables.

Risk Assessment
Identify and evaluate risks within the project and develop strategies for dealing with them.

2. Documentation

2.1 Written documentation (Thesis Rapport)

Document in writing and electronically your approach, the theoretical background, the application of
methods and concepts, the implementations and test results. Also check the planned with the actual
schedule, the achievement of goals and reflect on experiences.
Be sure to strictly separate personal comments from facts. The main part of the documentation is
completely fact-based. This means that no sentences of the kind "Then we had the problem x and
tried to solve it with y" are allowed to occur. But if such a problem x really exists and not only you did
not get to the edge with it, then you should write: "Tests z have clearly shown that a problem x ex-
ists. Possible approaches to solve problem x are a, b and c. We chose variant c for reasons e and f."
Only in an extra section can you formulate your personal impressions, experiences, problems and
the like.
It is also important that a good documentation must still be read after many years and that it gives
the reader a well-rounded picture, even if he was not directly involved in the work. Please also attach
great importance to linguistic quality.
The target audience of this documentation are the supervisors, the experts, the client and future stu-
dents who want to continue working in this area.
The documentation is created during the course of the project. For the second coaching meeting, a
table of contents of the report should be prepared so that it can be discussed with the supervisors.
The parts for research and analysis are to be presented after the first third of the project.

On the web portal of the FHNW you create a project presentation (web summary). For bachelor the-
ses in the spring semester, you will also create a poster for the exhibition. Both artifacts must be dis-
cussed with the supervisors prior to publication.

The following information must be mentioned on all publications:

Institute for Interactive technologies Bahnhofstrasse 6 5210 Windisch www.fhnw.ch/iit

• Logo FHNW
• Semester project IP5 or Bachelor thesis (IP6)
• Project name
• Spring- or Autumn Semester 202x, Degree Program Computer Science (Profiling iCompetence),

University of Applied Sciences and Arts Northwestern Switzerland
• Submitted by: Name of Students
• Submitted to: Name of Supervisor
• Client: Company / Institution
• Date

Further information on writing reports can also be found on the Information Literacy Platform

2.2 Presentations

Presentations take place in consultation with the supervisors and the client. The expert will also be
present when defending your bachelor's thesis.

On the one hand, presentations provide an overview of the entire project and the results achieved
and deepen one or two important interesting questions. Also part of the presentation is a concise
demonstration of how to use your software. With the audience, you can expect a technically experi-
enced professional audience. Schedule 30' for the presentation and demonstration and reserve 30'
for questions and discussion.

2.3 Publication of the project results

If the work or parts of the work are published, all names of the project participants (students,
supervisors, clients) as well as the name of the institution (FHNW) must be mentioned. Before each
publication, supervisors and clients must be asked for their consent in advance.

2.4 Protocols

Protocols are an important part of the documentation. Professionally managed protocols contain the
following points:
- Date, Space, Time, Participants, Excused
- Agenda
- Project status (possibly with screenshots, sketches, etc.; Status according to planning)
- Content (fact-based, thematically structured and comprehensible in terms of content; Decisions

are recorded)
- Open questions
- Next steps; Appointments & tasks (who, what & until when)

2.5 Document repository

Set up access to your document storage for the maintainers. If there are no compelling reasons
against it, use the Gitlab infrastructure of the FHNW1.
Also, use this document cabinet to store additional documentation, such as how to run your code.
Make sure that an adequate commit history is visible to the caregivers.

2.6 Submission

The project submission includes (unless otherwise defined with the project manager) the following
artifacts:
- Written documentation (Thesis Rapport)
- Project agreement (on the shelf as an appendix in the thesis)
- Codebase (documented & with readme to explain the setup), hosted on GitLab of the FHNW

(https://gitlab.fhnw.ch/iit-projektschiene/[semester]/[project]) and as a ZIP archive

1 https://gitlab.fhnw.ch/

Institute for Interactive technologies Bahnhofstrasse 6 5210 Windisch www.fhnw.ch/iit

- Link to the project appearance on the FHNW web portal
- other artifacts, if available (screencast recommended, ...)

Institute for Interactive technologies Bahnhofstrasse 6 5210 Windisch www.fhnw.ch/iit

3. Project-specific agreement

3.1 Initial position

Swissplatz is a mediation company that connects individuals looking to rent an apartment with plat-
forms that offer rental listings. Throughout the entire process, the client has no direct contact with the
landlord—all communication goes through the mediator. This is especially important as many clients
come from abroad and are unfamiliar with the local language and rental laws.

The workflow consists of three main phases: Searching, Administration, and Viewing.

In the Searching phase, the client shares their preferences with the mediator, who then searches for
suitable apartments and informs the client. This process is iterative until a suitable property is found.
If necessary, the mediator also contacts landlords to clarify missing information in listings.

The Administration phase involves the exchange of information between clients and landlords via
the mediator. Since landlords often require different documents and use their own forms, automation
is challenging, leading to extensive back-and-forth communication.

In the Viewing phase, the mediator arranges the apartment viewing appointment.

Due to the high level of manual work required, these processes are time-consuming. Finding ways to
optimize and partially automate certain steps could significantly improve efficiency.

3.2 Project vision

The goal of this project is to create an integrated platform that streamlines communication and auto-
mates key aspects of the rental mediation process. Currently, the client preferences are managed in
an excel file, and mediators manually search for listings and manage communication. The new solu-
tion aims to centralize these processes on a single platform, improving efficiency and accessibility.

The platform will serve as a hub where clients can enter their housing preferences through an online
form, while mediators manage rental offers in one place and upload them manually if needed. All in-
teractions—such as feedback on listings, document requests, and appointment coordination—will
take place within this platform, ensuring smooth and transparent communication between clients and
mediators.

A key aspect of the project is automating the property search process. The system will gather listings
from various sources, reducing the need for manual searching and allowing mediators to focus on
high-value tasks. By integrating these functionalities, the platform will enhance scalability, improve
user experience, and provide a structured yet flexible solution for rental mediation.

Institute for Interactive technologies Bahnhofstrasse 6 5210 Windisch www.fhnw.ch/iit

3.3 Questions

A. What are the key challenges and best practices in retrieving and processing data from vari-

ous platforms to enable automation in the rental mediation process?
To address this question, a structured approach is taken. First, an analysis of existing data retrieval
methods is conducted, examining industry standards such as APIs, web scraping, and data aggrega-
tion techniques. Various approaches used in real estate platforms are evaluated to understand their
effectiveness and limitations. Additionally, existing automation solutions are reviewed to identify best
practices for handling dynamic and structured data. Based on these findings, a concept is developed
that enables efficient data collection while ensuring scalability and compliance with platform-specific
restrictions.

B. How can the user experience be optimized to simplify data input and interaction between cli-
ents and mediators and how is it perceived by users?
To ensure a seamless and intuitive experience for both clients and mediators, a user-centered de-
sign approach is applied. First, the key pain points in the current workflow are identified through user
research and process analysis. Best practices in usability testing, and prototyping are then reviewed
to explore how an interactive platform can enhance communication and data management. Through
iterative design and user evaluations, different input methods and interaction models are tested to
develop an optimal solution that reduces complexity and improves efficiency for all users involved.
Additional user tests will be done to ensure the validation of the platform.

C. What are the possibilities of artificial intelligence that can be utilized to automate processes
in the rental mediation workflow?
To explore the role of AI in automating the rental mediation process, existing AI applications in real
estate and process automation are analyzed. Key areas of focus include automated property match-
ing based on client preferences, intelligent document handling, and chatbot-assisted communication.
Various machine learning models are evaluated for their ability to optimize workflow efficiency while
maintaining data security and accuracy. Based on these insights, a structured concept is developed
that integrates AI-driven automation while ensuring transparency and user control over critical pro-
cesses.

In addition to the project-specific questions, the following generic questions will be considered in the
implementation of their work:

D. Identification of suitable scenarios and user interface prototyping: Which approaches do you use to
reach the defined target group?

E. Technical concept: With which technical concept do you achieve the desired solution?

F. User Interface Design: Which interaction concepts, interface designs and visual languages are suita-
ble for your approach?

G. Implementation: With which technical implementation do you meet the requirements for functionality,
usability, reliability, efficiency and maintainability?

H. Testing: Correctness, usability and reliability are central to the successful introduction of the soft-
ware. How can you ensure and test them?

Institute for Interactive technologies Bahnhofstrasse 6 5210 Windisch www.fhnw.ch/iit

3.4 Methodology

To ensure the successful implementation of the project, we rely on methodologies that cover the fol-
lowing key aspects:

Project Planning: Combination of Scrum and Kanban
For high-level project planning, Scrum is used to define clear phases, milestones, and dependen-
cies, ensuring a structured workflow throughout the entire project timeline. This provides a solid
framework while maintaining flexibility. Kanban complements this approach by enabling agile task
management, allowing the team to adapt to changes as needed. Kanban boards are used to visual-
ize progress continuously, ensuring transparency and improving responsiveness to new require-
ments or challenges.

Requirements Analysis (Requirements Engineering)
To define user needs, expectations, and technical requirements, an iterative process is applied. Reg-
ular meetings with clients and supervisors are held to gather and document requirements, serving as
a foundation for development and helping to establish clear goals. The focus is on answering key
questions that drive the project forward. Additionally, literature research and competitor analysis are
conducted to derive industry-specific requirements for the product.

User-Centered Design
A user-centered approach is followed to ensure that the platform is intuitive, user-friendly, and func-
tional. Iterative prototypes serve as the foundation for continuous usability testing, where feedback
from potential users is gathered and integrated into the development process. This ensures that the
final product meets user expectations and enhances overall usability.

Scientific Research and Literature Review
To address specific research questions and requirements, a thorough literature review is conducted.
This includes analyzing scientific articles, technical reports, and industry best practices, as well as
comparing competitor products. Additionally, discussions with industry experts provide valuable in-
sights, helping to translate theoretical knowledge into practical solutions.

Institute for Interactive technologies Bahnhofstrasse 6 5210 Windisch www.fhnw.ch/iit

3.5 Planning

Nr. Work package Duration Deliverable Activities

AP-1 Project manage-
ment

65h Project agreement,
Protocols, project
planning,

Documentation, Project
agreement, Planning,
Meetings, Create epics and
user stories

AP-2 Project documenta-
tion

160h Documentation Documentation

AP-3 Analysis of current
workflow

45h Protocols of results,
internal report for
documentation

Research, Comparison of
competitors, Documenta-
tion, Evaluation

AP-4 Analysis of technol-
ogy stack

60h Protocols of results,
Internal report for
documentation,
Proof of Concepts

Literature research, Com-
parison of competitors Doc-
umentation, Evaluation,
Developing PoCs

AP-5 Design analysis of
web application

60h Prototypes, Per-
sonas, Internal report
for documentation,
User testing

Literature research, Com-
parison of competitors,
User testing, Documenta-
tion, Evaluation, Prototyp-
ing, Creating personas

AP-6 Development of
web form: replacing
Excel workflow

100h Web application,
Documentation

Developing web form appli-
cation, Testing, Evaluation,
Documentation

AP-7 Development of ad-
ministrator over-
view

100h Web application,
Documentation

Developing administrator
overview, Testing, Evalua-
tion, Documentation

AP-8 Development of
data extraction and
integration

80h Web application,
Documentation

Developing data extractor,
Testing, Evaluation, Docu-
mentation

AP-9 Integration 25h Web application,
Documentation

Integrating new website
into current solution

AP-10 Validation 25h Documentation, Re-
sult of user testing

Documentation, Validation,
Evaluation, User testing

Institute for Interactive technologies Bahnhofstrasse 6 5210 Windisch www.fhnw.ch/iit

Nr. Milestone Date

M-1 Project agreement signed 17.03.2025

M-2 Proof of Concept for data extraction 07.04.2025

M-3 Proof of Concept for integration of WIX with another website 28.04.2025

M-4 Development of web form finished 09.06.2025

M-5 Delivery of IP6 11.08.2025

Timetable

The following table shows when work is being done on which work packages. The milestones are
marked in red. The schedule is not yet complete and will be continuously updated. The orange-
marked fields (05.05) indicate the project week.

Institute for Interactive technologies Bahnhofstrasse 6 5210 Windisch www.fhnw.ch/iit

3.6 Risk Assessment

Nr. Risk Description

R-01 Communication problems Insufficient communication between the team members
can lead to misunderstandings. Also, the customer and
supervisors can be affected.

R-02 Exceeding Deadline for project Exceeding the deadline due to insufficient time plan-
ning.

R-03 Absence of a team member The absence of a team member can lead to limitations
in progress and delays.

R-04 Changes of requirements Additional requests from supervisors/customer may
trigger changes in the schedule.

R-05 Issues with Scraping data / le-
gal issues

If the data isn’t available to us, the project may lead to
more work.

R-06 Changes of data / scraping not
working anymore

If the data we scrape is being changed, due to updates
from the websites.

R-07 Connection to WIX-Website
not possible

Our created website won’t connect to the existing WIX-
Website

Risk Evaluation

Probability of occurrence very likely
likely

possible R-06
R-05, R-
02

unlikely R-04
R-01, R-
07 R-03

very
unlikely

very low low critical

very
critical

Extent of damage

Institute for Interactive technologies Bahnhofstrasse 6 5210 Windisch www.fhnw.ch/iit

Risk Actions

Nr. Risk Actions

R-01 Communication problems Regular meetings, clear protocols and use of communi-
cation platforms.

R-02 Exceeding Deadline for project Creating a detailed project plan with milestones and
regular reviews of resources and progress.

R-03 Absence of a team member Regular exchange and uploading of work to shared re-
positories can soften this problem.

R-04 Changes of requirements Open/honest communication and a clear definition of
goals from the beginning prevent this problem.

R-05 Issues with scraping data / le-
gal issues

Early testing and clarification with the provider can
identify problems early.

R-06 Changes of data / scraping not
working anymore

Using different sources to prevent missing data and
building the scraping process so that it is easily adapta-
ble.

R-07 Connection to WIX-Website
not possible

Early testing in this case could identify problems early.

	List of Figures
	List of Tables
	1 Introduction
	1.1 Background and motivation
	1.2 Objectives and vision of the project
	1.3 Structure of the documentation
	1.4 Solution approach

	2 Background
	2.1 Initial Situation
	2.2 Initial Technical Setup
	2.3 Stakeholders

	3 State of the Art
	3.1 Related Work / Literature Review
	3.2 Existing Solutions / Competitor Analysis
	3.3 AI in Relocation Services
	3.4 Data Gathering
	3.5 Middleware
	3.6 Frontend / Website Technologies
	3.7 Database

	4 Methods
	4.1 Project Methodology
	4.2 Proof of Concepts
	4.3 System Usability Scale
	4.4 Usability Testing

	5 Conceptual Design
	5.1 Requirements Specification
	5.2 System Architecture
	5.3 Database
	5.4 Chatbot
	5.5 Middleware
	5.6 Data Gatherer
	5.7 Frontend

	6 Implementation
	6.1 Analyzis of the Current State
	6.2 Data Gathering Engine
	6.3 Middleware
	6.4 Relocation Dashboard
	6.5 Chatbot / AI assistant
	6.6 Integration with Existing Systems
	6.7 Database Model
	6.8 Docker-based Containerization

	7 Evaluation
	7.1 Usability testing
	7.2 Requirement Fulfillment
	7.3 Comparison to the State of the Art

	8 Discussion
	8.1 Addressing research questions

	9 Conclusion and future work
	9.1 Open challenges
	9.2 Further development potential

	Sources
	Declaration of honesty
	A Appendix

